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Abstract

We devise a notion of polynomial runtime suitable for the simulation-based secu-
rity analysis of multi-party cryptographic protocols. Somewhat surprisingly, straight-
forward notions of polynomial runtime lack expressivity for reactive tasks and/or
lead to an unnatural simulation-based security notion. Indeed, the problem has
been recognized in previous works, and several notions of polynomial runtime have
already been proposed. However, our new notion, dubbed reactive polynomial time
is the first to combine the following properties:

• it is simple enough to support simple security/runtime analyses,
• it is intuitive in the sense that all intuitively feasible protocols and attacks
(and only those) are considered polynomial-time,

• it supports secure composition of protocols in the sense of a universal compo-
sition theorem.

We work in the Universal Composability (UC) protocol framework. We remark
that while the UC framework already features a universal composition theorem, we
develop new techniques to prove secure composition in case of reactively polynomial
time protocols and attacks.

Keywords: Universal composability, polynomial runtime, multi-party protocols, pro-
tocol composition.
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1 Introduction

1.1 Introduction to the problem

The security of cryptographic protocols is often based on the hardness of certain computa-
tional problems, such as, e.g., inverting a given trapdoor one-way permutation. Breaking
the protocol security then requires solving the underlying computational problem. To
prove this, one generally considers reductions, i.e., one translates a successful crypto-
graphic attack on the protocol security into an algorithm that solves the underlying
computational problem. For such a reduction to work, it is necessary that the complex-
ity of protocol runs is bounded, so that the protocol situation can be translated into the
setting in which the computational assumption is formulated. Typically, computational
assumptions are formulated against algorithms which are probabilistic polynomial time.
That means, one usually assumes that an arbitrary but fixed polynomial upper-bounds
the runtime of the algorithm.

So it is not merely of aesthetic interest to find a notion that captures the notion of
polynomial time complexity for cryptographic protocols. It is also a practical necessity
to conduct security proofs.

Our goal in this contribution is to find a useful and meaningful notion of polyno-
mial time complexity for cryptographic protocols that matches the intuition of what is
feasible. In particular, the induced security notion should be useful when analyzing the
composition of protocols.

More specifically, we endeavor to find a notion of polynomial-time together with a
variant of the UC security notion such that the following requirements are fulfilled:
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Flexibility: All “intuitively feasible” protocols and protocol tasks (and only those) should
be considered polynomial-time. In particular, natural protocol tasks like secure
channels should be polynomial-time and not be excluded for formal reasons.

Soundness: All “intuitively feasible” attacks (i.e., adversaries) should be considered po-
lynomial-time. Otherwise, we would have no guarantee that a secure protocol
indeed withstands real-world attacks. In particular, in the context of universal
composability the very important “dummy adversary” should be polynomial-time.

Completeness: Only “intuitively feasible” attacks should be considered polynomial-time.
Otherwise, the resulting security notion would be too strong and the security of
protocols could not be reduced to computational hardness assumptions.

Composability: The security notion should support secure composition of an arbitrary
number of concurrent protocol instances in arbitrary contexts (universal composi-
tion).

Simplicity: the notion should be easy to formulate, and for all practical cases, it should
be easy to decide whether a protocol or attack runs in polynomial time.

Note that flexibility can be seen as a dual to soundness and completeness. In particular,
flexibility captures the feasibility of protocols, while soundness resp. completeness capture
the feasibility of attacks. Thus, this distinction distinguishes requirements on algorithms
from requirements on adversaries.

The UC framework. Since we strive for composability, we work in the protocol
framework of universal composability (UC) [Can01, Can05a].1 The UC framework
[Can01, Can05a] defines the security of a protocol (often called the real protocol) by
comparison with an ideal protocol. The ideal protocol usually comprises only a single
trusted machine, a so-called ideal functionality, which is secure by construction. The
ideal protocol can be thought of as the specification of the protocol task that should be
achieved by the real protocol. In the UC framework, the real protocol is considered to
be a secure implementation of the ideal protocol if only those attacks are possible in the
real protocol that are also possible in the ideal protocol. More precisely, for any adver-
sary that interacts with (attacks) the real protocol, there is a corresponding adversary
(the simulator) that interacts with the ideal protocol such that no protocol environment
interacting with both the protocol and the adversary can distinguish between an execu-
tion of the real and an execution of the ideal protocol. In this case we say that the real
protocol emulates the ideal protocol. To be able to use computational assumptions in
the protocol design, one usually requires the adversary, the simulator, the environment,
and both the ideal and the real protocol to be polynomial-time.

1We stress that our observations and results apply as well in any other protocol framework in which
security is defined through an interactive simulation. In particular, our results apply also in the frame-
works of Reactive Simulatability (RSIM) [PW01, BPW04b], SPPC [DKMR05], IITM [Küs06], Task-
PIOA [CCK+06a, CCK+06b], and environmental security [Gol04, Section 7.7.2].
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Since ideal functionalities can model very different protocol tasks, the UC frame-
work is very versatile. Furthermore, it gives very strong composability guarantees: If a
protocol π emulates a protocol φ, and a protocol ρ that uses the ideal protocol φ as a
subprotocol emulates some ideal functionality F , then after replacing φ by its implemen-
tation π, ρ still emulates F . This enables the modular design of security protocols.

We give a detailed overview over the UC framework in Section 2.

1.2 Our work

Our approach: reactively polynomial-time protocols. We propose a new no-
tion of polynomial runtime for cryptographic protocols; reactive polynomial time. The
basic intuition behind our notion is that a protocol should be considered polynomial-
time as long as it is not possible to make it run more than a polynomial number of
steps. However, the precise polynomial bounding the number of steps should depend on
the context the protocol runs with. For example, if the protocol runs in a context that
gives extremely long input, the protocol should be allowed to run longer. On the other
hand, we should not allow contexts that input messages of superpolynomial length; it
would be too restrictive to require that the protocol runs in polynomial-time on super-
polynomial inputs. Thus we restrict the contexts to a priori polynomial-time machines,
i.e., machines whose running time, in any situation, is bounded by a fixed polynomial
(depending only on the machine). Note that a priori polynomial time is the classical
notion of polynomial time for reactive machines, employed, e.g., in [Can01, PW01]. We
then get the following definition of reactive polynomial time:

Definition 1 (Reactive polynomial time (informal)) A protocol π runs in reac-
tive polynomial time iff for any a priori polynomial-time machine Z, we have there
is a polynomial p, such that the network π ∪ {Z} (in which Z interacts with π) runs,
with overwhelming probability, at most p steps.

It is easy to see according to this definition, the polynomial p bounding the running time
of π may depend on Z (and thus be large enough so that π can process all inputs coming
from Z). On the other hand, since Z is a priori polynomial-time, π is not required to
run in polynomial-time on superpolynomially long inputs or on inputs that are infeasible
to find.

Notice that we only require π ∪ {Z} to have runtime p with overwhelming probabil-
ity, not with probability 1. This may seem like an unnecessary complication, yet this
relaxation is essential to allow for a composition theorem; see Section 9.1 for a detailed
explanation and proof. (We remark, however, that it is not essential whether the con-
sidered protocol context is polynomial-time or only polynomial-time with overwhelming
probability; see Section 4, page 31 for an explanation.)

It should also be noted that being reactively polynomial-time is a property of the
protocol as a whole, not of the individual machines (unlike the property of being a priori
polynomial-time).
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Given the notion of reactive polynomial time, we can now rephrase the notion of UC
with respect to reactively polynomial-time protocols.

Definition 2 (UC with respect to reactive polynomial time (informal)) We call
an adversary A valid for a protocol π iff π ∪ {A} (the protocol π running together with
the adversary A) is reactively polynomial-time. Analogously for simulators.

Let π and φ be protocols. We say π emulates φ iff for any adversary A that is valid
for π there is a simulator S that is valid for φ such that no a priori polynomial-time
environment Z can distinguish between π ∪ {A} and φ ∪ {S}.

Notice that the only difference to the classical notion of UC [Can01] is that we do not
quantify over a priori polynomial-time adversaries and simulators, but instead over valid
adversaries and simulators, i.e., over adversaries and simulators that keep the protocol
reactively polynomial-time.

The advantage of this notion is that it behaves better than classical UC when the
protocols are reactive polynomial-time (and not just a priori polynomial-time). For
example we get the following composition theorem:

Theorem 3 (Universal composition theorem (informal)) Let π, φ, and ρ be pro-
tocols. Let ρπ denote the protocol where ρ invokes an arbitrary number of instances of
π as subprotocols. Analogously for ρφ. Assume that π and ρπ are reactively polynomial-
time, and that π emulates φ. Then ρπ emulates ρφ.

We stress that with respect to classical notions of UC, this theorem only holds if π and φ
are a priori polynomial time. Yet, considering only a priori polynomial-time protocols
would exclude many natural protocols (see Section 1.4).

There is one noteworthy limitation to our composition theorem: It takes as an explicit
assumption that ρπ is reactively polynomial-time. Thus, in order to apply the theorem,
one needs to manually verify that the composed protocol ρπ is reactively polynomial-
time in order to derive its security with the composition theorem. Fortunately, in most
cases the runtime of a protocol is simple to analyze, while its security is the interesting
property.

Simplicity. We claim that our definitions are quite simple. Of course, simplicity is
both a matter of taste, as well as a matter of comparison with other notions. The most
basic notion, a priori polynomial-time (which is used in [Can01, PW01]) is arguably sim-
pler than our notion, but it excludes protocols whose running time depends on the input
length, and it is subject to certain technical artifacts (see our discussion in Section 1.4).
Prior notions that try to solve the problems of a priori polynomial-time are, in our
opinion, more complicated than reactive polynomial time. Often, they have to introduce
distinctions of various types of channels between machines; the maximum allowed run-
ning time depends in different ways on the amount of communication on the different
channels types. ([Can05a] distinguishes six types of tapes for input/output, subrouting
invocation/results, and incoming/outgoing messages; [HMQU05] introduces a special
connection between environment and adversary that is counted differently.) Other ap-
proaches introduce some methods of filtering unneeded incoming communication so that
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it does not waste runtime. ([Bac02, BPW04b] introduce so-called length-functions that
allow to close down a connection; [DKMR05] extends this approach to so-called guards
that are general purpose filters on incoming connections.) Other approaches use artificial
padding of inputs or outputs in order to satisfy certain certain length requirements that
come from the definition of polynomial time. (In some notions, a functionality leaking
some length l can be securely realized if it sends l in unary encoding while it cannot
be realized if it sends l in binary; see Section 8. See also our discussion on padding in
Section 3.) Our notion of reactive polynomial time does not need any such technical
tools in the network and machine model.

It remains, of course, the question whether it is simple to check whether a given
protocol is reactive polynomial time. In general, this is of course an undecidable problem.
(Even for a priori polynomial time, this problem is undecidable.) We believe, however,
that for a natural protocol, it is easy to see that it is reactively polynomial-time: In
most cases, there will be a (simple to find) upper bound on the running time that is a
polynomial of the total length of the protocol inputs. Deciding whether a given adversary
is valid may be harder. In contrast to protocols, we cannot expect that adversaries are in
any way natural. Fortunately, we show that without loss of generality, one can assume a
particular adversary, the dummy adversary (Theorem 19). This adversary just forwards
all messages; its running time is trivial to analyze.

Flexibility. We claim that the notion of a reactively polynomial-time protocol cap-
tures all intuitively feasible protocol tasks (and only those). We admit that such a claim
is hard to formally substantiate, since the set of intuitively feasible protocol tasks is
not formally defined. However, it is clear that the notion of reactive polynomial time
generalizes a priori and a posteriori polynomial runtime bounds as discussed above.
Furthermore, it is easily verified that the problematic use cases described in Section 1.3
below can be modeled as reactively polynomial-time protocols (resp. ideal functionali-
ties). On the other hand, a reactively polynomial protocol along with a valid adversary
behaves efficiently in any given a priori polynomial-time protocol context (except with
small probability). In particular, such a system can be simulated (up to negligible error)
inside one single machine that is polynomial-time in the usual, static sense (i.e., a priori
polynomial). Hence, every reactively polynomial-time protocol is efficient in this sense.
Summarizing, we claim that our notion is flexible.

Soundness and completeness. We consider only adversaries that are valid, i.e.,
adversaries that, together with the protocol, are reactively polynomial-time. This implies
that the adversary never (up to negligible probability) runs more than a polynomial
number of steps (Lemma 12). Thus only “intuitively feasible” attacks are considered; we
achieve completeness. On the other hand, if the protocol is reactively polynomial-time,
all reasonable adversaries are considered: We consider all adversaries that do not make
the protocol loose its reactive polynomial time property, i.e., all adversaries that do not
“introduce” superpolynomial-time computations. Thus all “intuitively feasible” attacks
are covered; we achieve soundness. Moreover, we stress that none of the technical artifacts
discussed in Section 1.4 occur. In particular, neither adversaries nor protocol machines
can be“exhausted”. That is, we do not get the artificial condition that a machine is forced
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to ignore messages because the environment sends to many inputs. Additionally, in our
notion the important“dummy adversary” is valid (Theorem 19), which is important both
for composability and soundness. On the other hand, using reactively polynomial-time
adversaries induces a security notion that lies (strictly) in between the traditional UC
security notion and a relaxation of UC discussed in [Lin03] (Theorem 41). Thus, our
new notion still provides a reasonable and useful definition of security.

Composability. Concerning composability, our notion has a certain (unavoidable) lim-
itation: If two networks S1, S2 are both reactively polynomial-time, the network S1 ∪S2

consisting of all machines in S1 and S2 is not necessarily reactively polynomial-time.
This stands in contrast to other notions of polynomial time such as a priori polynomial
time. Yet, we claim that this limitation is an unavoidable consequence of the flexibility re-
quirement. There are machines that, on their own, would be intuitively considered to be
polynomial-time, yet the composition of several such machines would not be polynomial-
time with respect to any reasonable definition. For example, two machines that echo all
incoming data should be polynomial-time individually, but if they are combined to echo
each other’s messages, their running time is unbounded. Since the flexibility requirement
demands that such (intuitively polynomial-time) machines are considered polynomial-
time, it is not possible to satisfy flexibility and composability simultaneously.

However, the most important aspect of the composability requirement is satisfied
by our notion, namely that security (as opposed to running time) is preserved under
composition.

We demonstrate that our notion induces a composable security notion by proving the
universal composition theorem (Theorem 3/21). This proof is considerably more complex
than proofs of composability for previous notions of polynomial runtime (such as, e.g., the
proofs from [Can01, BPW04a, Can05a, DKMR05]). Ironically, this complexity seems to
result from the simplicity of our notion: in the proof, it is necessary to prove that certain
combinations of protocol pieces are still reactively polynomial-time. The good news is
that these results do not have to be proven during the design of the protocol (except for
the condition that ρπ is reactively polynomial-time). As a consequence, our composition
theorem needs only relatively few assumptions, which might come in very handy during
protocol design. We now provide further details.

Common structure of (universal) composition theorems. Put very briefly,
a (universal) composition theorem states that whenever one protocol instance is secure,
then also multiple protocol instances are secure, even when used in arbitrary contexts. In
the UC framework, security means existence of a simulator. Hence, to prove a UC com-
position theorem, one usually (explicitly) constructs a simulator S∞ for many protocol
instances from a simulator S for one protocol instance. This construction usually (e.g.,
[Can01, BPW04a]) is conceptually simple: S∞ is the combination of multiple instances
of S.2 To prove security, one must show that

1. the constructed simulator S∞ is valid (in the sense that S∞ fulfils the respective
polynomial-time notion), and

2Of course, we are oversimplifying here. A more accurate presentation will be given in Section 2.1.
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2. S∞ achieves a successful simulation (in the sense of the UC security definition).
The first of these properties is usually trivially verified, while the second property is
shown using a hybrid argument.

The obstacle with reactively polynomial-time simulators. In the case of reac-
tively polynomial-time protocols and adversaries, however, the first property (S∞ is a
valid adversary) is not trivially verified. Concretely, as hinted above, the composition
of several reactively polynomial-time machines may no longer be reactively polynomal.
As an example, consider a “double-repeater” R that resends every incoming message
twice (i.e., on incoming message x, it sends xx). Any single such machine is clearly
reactively polynomial-time. However, pipelining k such machines R yields a machine R′

which, e.g., sends 12
k
when receiving 1. Thus, R′ is exponential-time and not reactively

polynomial-time. We stress that we consider this property of our notion of reactive
polynomial time not to be an artifact, but a necessity. The lack of composability of the
notion itself is simply the price we have to pay for completeness, i.e., for the ability to
model natural functionalities such as secure channels or (double-)repeaters. If we want
to model such machines (and this is the design decision we made), then we have to deal
with the technical consequences.

Our techniques to overcome the obstacle. Hence, we have to explicitly prove
that the combined simulator S∞ constructed in the composition is, together with the
composed protocol, reactively polynomial-time. To this end, we use not only that one
simulator instance S is reactively polynomial-time. We also employ the fact that S
achieves UC indistinguishability. More concretely, we show that if S∞ was not reactively
polynomial-time, then we could distinguish a simulation by S from a real attack on a
single protocol instance.

We proceed as follows: in the l-th step, we consider a hybrid system Hl. Hl consists
of a fixed larger protocol ρ, together with l instances of the ideal subprotocol φ, each
running with an instance of simulator S. (The remaining subprotocol instances requested
by ρ are instances of π running with the dummy adversary.)

Essentially, we will prove that all l ideal subprotocol simulations in Hl adhere to a
single polynomial runtime bound T that does not depend on l. To show our claim, we
proceed by induction on l. By assumption on ρπ and S, we know that such a bound
T exists in H1. Fix this bound for all l. Now assume we have proved that all ideal
simulations in Hl−1 adhere to bound T . Now consider an environment Z∗

l that internally
simulates Hl−1, but relays one real subprotocol instance to the outside (cf. Figure 1 (c)
on page 23). If Z∗

l runs with π and the dummy adversary, this setup equals Hl−1. But
if Z∗

l runs with φ and S, this setup equals Hl. Hence, by induction hypothesis, Z∗
l will

observe that when running with π and dummy adversary, all internally simulated ideal
subprotocol instances adhere to the runtime bound T .

Since π emulates φ, this implies that the same holds also when Z∗
l runs with φ and

S. Note the unfortunate asymmetry of this argument: we can conclude that l − 1 ideal
subprotocol instances inHl adhere to bound T . (Namely, this holds for all ideal instances
that are internally simulated inside Z∗

l .) However, we cannot immediately deduce that
the bound T applies to the l-th ideal subprotocol instance that corresponds to the φ-
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instance that is relayed outside of Z∗
l . In particular, we cannot immediately deduce that

our induction claim holds for Hl.
Our solution to this complication is to randomly shuffle the order of subprotocol in-

vocations. Concretely, Z∗
l uniformly selects a subset of l − 1 subprotocol instances as

ideal sessions, and another uniform instance as the instance that is relayed to the outside.
As a consequence, runtime bounds derived for internally simulated ideal instances auto-
matically apply to the instance that is relayed outside of Z∗

l . (Namely, if only a single
ideal instance did not adhere to bound T , then this instance is simulated inside Z∗

l and
hence “caught”with probability (l− 1)/l.) We can hence derive that also in Hl, all ideal
subprotocol instances adhere to the fixed runtime bound T . By induction, we get that
the system ρφ, running with simulator S∞, is reactively polynomial-time as desired.

Of course, this exposition neglects a few technicalities. (In particular, most claims
only hold with overwhelming probability.) The full proof will deal with these issues.

1.3 Some problematic use cases

To illustrate the kind of natural protocols that may be rejected by too restrictive a
definition of polynomial time, we give two simple and natural examples of problematic
protocol tasks. Recall that, since we strive for composability, we work in the UC frame-
work. Hence, protocol tasks are specified as ideal functionalities (that reflect the ideally
desired behavior). We will need these examples in Section 1.4 below to illustrate difficul-
ties with other approaches to defining polynomial-time. We stress that these examples
to not pose any problems with our notion; both are reactively polynomial-time.

Secure channels. A natural protocol functionality is that of a secure channel, again
modeled as a single machine. For simplicity, let us say that the machine accepts only
inputs of the form (send, receiver,message), and gives outputs of the form (message,
sender,message) (where the semantics should be clear).

We stress that this ideal functionality may be activated arbitrarily often, with arbi-
trarily large message inputs. Hence, this functionality does not satisfy a polynomial-time
notion that bounds the number of activations or the size of allowed inputs a priori. This
eliminates most so far presented polynomial-time notions, except for (a) the variation on
a posteriori polynomial-time bounds, (b) the notion from [HMQU05], (c) and the most
recent polynomial-time definition of the UC model. In particular, all polynomial-time
definitions that enforce an a priori runtime bound on machines do not allow to model a
simple secure channel. In some situations, machines that just forward messages are also
called repeaters or forwarders. These names are usually used when the machines are not
intended to represent connections between parties, but instead are used as a technical
tool in definitions or proofs.

A database functionality. Consider a publicly available centralized database, for-
malized as an ideal functionality, i.e., as a single database machine. The database ma-
chine accepts inputs of the form (store, key, data) and (retrieve, key), with the obvious
semantics (namely, an input (store, key, data) stores data under key, and (retrieve, key)
retrieves that data again).
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We stress that this database machine may be activated arbitrarily often, with arbi-
trarily large (store) inputs. Hence, similar to the preceding case of a secure channel, this
database machine does not satisfy a polynomial-time notion that a priori bounds the
number of activations or the size of allowed inputs. Additionally, observe that the quo-
tient of output and input size of database queries may be arbitrarily large: consider one
party storing a large database entry and then another party retrieving it—the retrieve
instruction itself is short, although the corresponding output may become arbitrarily
large. This latter property prevents a modeling in the most recent version of the UC
framework.3

Notice that the database functionality is reactive polynomial-time: in any given
a priori polynomial-time protocol context, only a fixed polynomial number of retrieve
queries can happen, each retrieving only a polynomially-sized piece of data. Thus the
running time of the functionality is polynomial in any such context.

The same problems as with the database functionality also occur when considering
an anonymous bulletin-board (as often used in remote voting protocols, e.g., [JCJ05,
MCC08]). Here every user can post messages (which corresponds to storing an entry
in the database), and every user can read the bulletin-board (which corresponds to
retrieving an entry from the database).

1.4 Straightforward approaches and why they fail

An a priori polynomial bound on the overall runtime. Probably the most
obvious approach is to allow only machines of polynomial (time) complexity as entities
in a protocol run. That is, there is a fixed polynomial qM , so that machine M halts
and cannot be activated again after at most qM (k) overall steps. (Here and in the
following, k ∈ N denotes the security parameter, that intuitively measures the “amount
of desired security.”) We assume that this bound is an a priori runtime bound; that is,
we assume that qM only depends on the machine M , but not on the context M is run
in (in particular, not on the runtime of the machines M interacts with). This bound
applies to honest protocol parties as well as to adversarial entities. In the UC setting,
these are the adversary, the simulator, and the environment.

This approach has several disadvantages. First, it becomes impossible to formulate
natural protocol tasks with an (a priori) unbounded number of activations (such as the
examples from Section 1.3). This is a violation of flexibility.

An obvious workaround (extensively used, for instance, in the “cryptographic library”
[BPW03]) would be to artificially bound in advance the number and size of inputs
to a cryptographic system. For instance, a secure channel might shut down after a
certain (fixed in advance) number of transmitted bits. We do not recommend this
workaround: it might not be clear in advance how often, say, a secure channel will be used.
Furthermore, this workaround creates the additional (intuitively unneccessary) hassle of

3Technically speaking, [Can05a] allows the database as a functionality, however it does not allow a
protocol party with that behavior; in particular, this makes it impossible to implement this functionality,
even when using a uncorruptible trusted party. See Section 3 for details.

10



fixing and keeping track of all concrete running time bounds. Strictly speaking, even the
finally deployed protocol implementation would need to keep track of the number of its
activations and stop working after a given time.

But there is a second, very severe technical drawback that becomes apparent when
considering the composition of cryptographic protocols. Recall that in the UC security
definition, the environment that represents the a larger protocol context, is chosen last.
But if all protocol machines have a priori runtime bounds, there is an environment that
can “exhaust” all protocol machines and even a given adversary, e.g., by sending them
useless messages and force them to waste their limited runtime by processing them. This
has been shown not only to cause severe technical artifacts. It actually renders many
natural protocol tasks formally impossible when allowing only machines with a priori
polynomial runtime bounds, cf. [HMQU05, Küs06].

An a priori polynomial runtime bound per activation. As a second straight-
forward approach, let us consider machines that perform only a polynomial number of
steps in each activation (possibly even dependent on input size instead of security pa-
rameter), but may be activated an unbounded number of times. This overcomes the
flexibility problems of forcing an upper a priori polynomial bound on the overall runtime.
However, when considering a network of two machines, even if both machines are a priori
polynomial-time per activation, the two machines can run infinitely long by activating
each other over and over again.4 Thus, the notion (at least if defined machine-wise) is not
applicable to networks of machines. (And there is no obvious way to extend the notion to
apply to networks as a whole.) Hence, we either need a definition of polynomial-time that
composes in the sense that a network of polynomial-time machines is polynomial-time
again, or, failing that, a definition that can be directly applied to the whole network (like
our definition of reactive polynomial time and like the a posteriori definitions described
below).

An a posteriori polynomial bound on overall runtime. This gives reason to con-
sider machines that are polynomial-time for any given machine (of arbitrary complexity)
they interact with. (For zero-knowledge, several such notions appear in the literature; an
explicit discussion and analysis has been conducted in [Gol07].) We claim that, while an
a posteriori runtime bound is useful in the zero-knowledge context, it does not constitute
a good definition of polynomial runtime for general protocols.

For general protocols, by a posteriori runtime we mean that every protocol machine
and the adversary run in polynomial time in every given (but arbitrary) context.

For instance, consider a secure channel R. Since we did not fix an a priori upper
bound on the size of the incoming data, R forwards incoming data of arbitrary length.
In particular, R runs in exponential time when interacting with a machine M that sends
12

k
to R. Hence even a secure channel would also not satisfy the a posteriori polynomial

4If we allow a machine to send messages to itself, we can even get the same effect with a single machine
activating itself. This is another indication that the notion of a priori polynomial time per activation
does not capture the intuitive notion of polynomial time.
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runtime definitions from the zero-knowledge case.5,6 As above, this violates flexibility

and, when also enforcing an a posteriori polynomial runtime bound for adversaries, it
might endanger soundness. In fact, in the context of UC, the dummy adversary, which
basically is the same as a secure channel/repeater, would not be allowed by an a posteriori
polynomial runtime bound. The dummy adversary is an essential technical tool to prove
composition theorems, cf. also Section 6. Hence, we also cannot guarantee composability.

A natural way to relax the a posteriori runtime bounds definition would be the
following: one could allow machines M that have polynomial time complexity when
running with any (a priori) polynomial-time machine M ′.

Let us call this modified a posteriori notion a posteriori polynomial-time in bounded
contexts (APPT-BC). Note that the secure channel R from above is indeed APPT-BC.
We claim that the APPT-BC notion enjoys flexibility: A protocol that does not run in
polynomial-time when interacting with an a priori polynomial-time context cannot, intu-
itively, be considered polynomial-time. Thus any intuitively polynomial-time protocol is
APPT-BC. Yet, the APPT-BC notion does not enjoy composability. First, two individu-
ally APPT-BC protocols are not necessarily APPT-BC when running together (consider
two repeaters echoing each other’s messages). This on its own is not necessarily a prob-
lem; the same happens with our notion of reactive polynomial time (see the discussion
on composability on page 7). Second, a security notion based on APPT-BC does not
even allow for secure composition of one protocol instance with a larger protocol. We
prove this fact in Section 9.1.7

Notice, however, that APPT-BC is already very close to our notion of reactive poly-
nomial time. The only difference is that in the definition of reactive polynomial time,
we allow for a negligible probability that the protocol runs in superpolynomial time.

Acyclic runtime dependencies. One reason why definitions of polynomial runtime
can be difficult is that two machines (e.g., secure channels) can be combined such that

5There is a subtlety here: by “polynomial-time,” we mean polynomial in the (global) security pa-
rameter, whereas in the zero-knowledge case, it is customary to assume that “polynomial-time” means
polynomial in the size of the input. However, in the context of general protocols, the former interpreta-
tion of “polynomial-time” is preferred, since it allows for a meaningful analysis of composed and nested
protocols as well as protocols with constant input size like oblivious transfer.

6In fact, a priori and a posteriori polynomial runtime coincide when arbitrary, unbounded contexts
are considered. Namely, say that a machine M runs at most q steps when running in a context C,
where q = qC(k) is a polynomial (in the security parameter) that may depend on C. Then, there is a
context C∗ that maximizes M ’s runtime by, for each security parameter k, acting like argmaxC qC(k).
By definition, qC∗(k) ≥ qC(k) for all contexts C, and hence qC∗(k) is a single polynomial that bounds
M ’s runtime in arbitrary contexts. Thus, M ’s runtime is already a priori polynomially bounded. (Note
that argmaxC qC(k) exists. Otherwise would could construct a context C∗ with qC∗(k) ≥ 2k which would
be a contradiction.) We conclude that we do not gain on generality by allowing a posteriori runtime
bounds, at least when we consider arbitrary, unbounded contexts.

7The intuitive reason is that real and ideal protocol might behave identically only up to a small
probability. Hence, real and ideal protocol might give slightly different (runtime) guarantees to adversary
and environment. Now a larger protocol that uses the real, resp. ideal protocol as a subprotocol might
ensure that the runtime of the real subprotocol will always be bounded, while the runtime of the ideal
protocol will only almost always be. This can lead to a situation in which any successful simulation will
sometimes (with negligible probability) require superpolynomial time.
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they send messages back and forth and consume an unlimited amount of runtime. This
problem can be solved by the following approach: In a network of machines, one defines
an acyclic directed graph on the set of machines. If there is an edge from M ′ to M , we
call M ′ the parent of M . Then we call a machine M polynomial-time if its running time
is bounded by an fixed (a priori) polynomial in the total length and number of incoming
messages sent by the parents of M . Incoming messages not coming from the parents of
M are allowed, but do not increase the allowed running time of M .

Although this approach allows for more protocols than a priori polynomial-time
(better flexibility), many protocols will still be rejected by such a definition as there is not
distinguished direction in which messages flow. For example, a database functionality
(described in Section 1.3 below) would not be considered polynomial-time because in
some cases the database would need running time from the parties retrieving data from
the database, and in some cases the parties retrieving the data would need running time
from the database.

Another problem is that it is not clear which running time dependency should hold
between the protocol, the environment, and the adversary or simulator. If the protocol
gets running time from the adversary or simulator, the latter may be forced to terminate
before the protocol run is complete, leading to soundness or completeness issues. If
the adversary or simulator gets running time from the protocol, the protocol may be
unable to react to messages arriving over the insecure network (that is controlled by
the adversary), and hence some natural protocols will be disallowed (flexibility deficits).
(The latest version of the UC framework [Can05a] uses a variant of this approach. Much
of the complexity of the definition of polynomial-time there is due to the necessity to
clarify which machine gets running time from which.)

Padding. Furthermore, the database example from Section 1.3 also illustrates why
padding, a solution often advocated to circumvent the runtime restrictions in the UC
framework [Can05a] is not always applicable. By padding we mean that a protocol
specification or functionality expects inputs that are padded to a suitable length such that
the machine receiving these inputs is allowed to run longer. In the case of the database
functionality however, padding does not solve the problem, since a party retrieving an
entry does not know in advance what the length of the data returned from the database
will be, and thus that party cannot know how long a padding has to be used. Also the
party storing the entry cannot add sufficient padding because it cannot know how many
times the entry will be retrieved. It seems possible to interactively pad messages, in
the sense that before giving the actual response, the database first requests padding of a
suitable length from the user. However, this approach seems unneccessarily cumbersome.
(More details on this problem are given in Section 3 which also gives further examples
of problems that might occur with too restrictive notions of polynomial time.)

1.5 Previous work

In the context of zero-knowledge. Perhaps zero-knowledge protocols [GMR89]
were the first example of protocol tasks for which it was recognized that a priori runtime
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bounds lead to surprising artifacts. For instance, certain definitions of zero-knowledge re-
quire for every adversary the existence of an expected polynomial-time simulator. (There
are also arguments for allowing expected polynomial-time adversaries [Fei90, Chapter 3].)
This is so since the successful simulation of an attack may require a number of adversary
rewindings that is only expected polynomial (as, e.g., in [GK96]). Goldreich [Gol07]
gives an excellent overview over different flavors of expected polynomial-time notions in
the zero-knowledge setting. We stress, however, that the issue of rewindings does not
apply to our setting, in which we are dealing with an interactive environment. (Hence,
the artifacts resolved by expected polynomial time are orthogonal to the artifacts in our
case.)

Another artifact that does concern our case is the following dependency problem that
arises with concurrent black-box zero-knowledge (e.g., [CKPR01]). Namely, with black-
box zero-knowledge, a simulator should be independent in particular of the internal
structure of the respective adversary. At the same time, however, the simulator should
be applied to an arbitrarily large (polynomial) number of zero-knowledge sessions that
may be scheduled and interleaved in an arbitrary way. In [CKPR01], this problem is
solved by letting the simulator (and hence its complexity) depend only on the number
of sessions. (This solution does not work in our case, since we want protocols as well as
adversaries to be more powerful than just a priori polynomial-time. Hence letting one
entity depend on the complexity of the other entities would lead to a cyclic definition.)

Length functions. Backes [Bac02] observed the technical artifacts that arise with
a priori polynomial runtime bounds in conjunction with an interactive protocol environ-
ment (cf. also Section 1.4). His solution, which has been incorporated into the Reactive
Simulatability framework (RSIM) [BPW04b], was to employ length functions, a techni-
cal tool to guard machines from being flooded with useless messages. This overcomes
the soundness issues of straightforward approaches. Yet, since these RSIM machines still
have an (a priori) polynomial upper bound on the overall runtime, this does not achieve
flexibility. Natural tasks like that of a public key encryption system (that allows an un-
bounded number of encryptions) still cannot be expressed. Besides, length functions are
a rather technical tool, that resulted from a technical artifact, and are intuitively not
easily explainable.

Continuously polynomial time. In this situation, Hofheinz et al. [HMQU05] sug-
gested to allow protocols that are, as a whole, polynomial time in their input size. This
achieves flexibility. With a specific, dedicated restriction on allowed attacks, they also
achieved (and demonstrated with examples) completeness and soundness of their defini-
tion. Namely, in their setting, neither protocols nor adversaries are required to ever
terminate; however, the “relative computation speed” of adversary and protocol has to
be polynomially related, and only polynomial-length execution prefixes are considered.
However, they do not give a universal composition theorem that would allow for the
composition of more than a constant number of protocol instances. Furthermore, their
restriction of allowed attacks is somewhat unintuitive and lacks simplicity.

In the UC framework. In the Universal Composability (UC) framework [Can01,
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Can05a] of Canetti, there are a number of approaches to define polynomial runtime. In
the initial formulation [Can01], an a priori polynomial overall bound on the number of
computational steps of each protocol entity was mandated. When the technical artifacts
of this became clear, several definitions were proposed [Can04a, Can04b, Can05b]. The
most recent8 version [Can05a] of the UC framework uses a definition in which machines
may be activated in principle infinitely often. However, at any point in time, a cer-
tain condition must be fulfilled that relates the runtime so far with the input/output
behavior of that machine. In particular, the input which a machine M gives to other
(sub-)machines must be smaller in size than the overall input M gets. This means that a
protocol has to take care that its own input is large enough in size such that all necessary
subprotocol invocations are allowed. In many cases, padding of the “top-level inputs” is
necessary, which complicates the specification of natural tasks (see Section 3 for more
details). In Section 3, we also show that composability might be a problem, since the
technical tool of a (complete) dummy adversary is not available which however is used
in the proof of the Universal Composition Theorem. Besides, the current UC notion of
polynomial runtime is arguably somewhat complicated and not simple.

In the SPPC framework. In a different line of work, Datta et al. [DKMR05] propose
different notions of polynomial runtime for cryptographic protocols in the SPPC frame-
work [DKMR05]. In [DKMR05], a natural extension to the length function approach
from [Bac02] is put forward. Specifically, where length functions merely allowed a ma-
chine to block messages from certain “spamming” senders, the guards from [DKMR05]
allow a machine to specify algorithms that decide whether an incoming message is blocked
or not. The computational steps used for deciding whether a message is blocked or not
are not counted as computational steps of the receiving machine. However, the notion
from [DKMR05] requires that machines still have an a priori polynomial upper runtime
bound, thus inducing the same flexibility issues as with length functions.

In the IITM framework. In the IITM framework [Küs06], two variants of polynomial-
time are proposed. The IO-enriching definition allows machines to have a running time
which is polynomial in the total length of the inputs it got over so-called enriching
input/output-channels. The definition additionally requires that the enriching channels
form an directed acyclic graph, so that no two machines can give each other running
time; this assures that the overall running time of the network stays polynomial. The IO-
network-enriching definition additionally allows network channels, i.e., channels between
different parties to be enriching. The IO-enriching definition bears a certain resemblance
to that of [Can05a]. In particular, it also imposes the limitation that in a communication
protocol, the running time of the recipient cannot depend on the length of the input of
the sender (as that input would have to be transmitted through a network channel).9

The IO-network-enriching definition resolves this problem; for this notion, however, no
universal composition theorem is given that would allow for the composition of more
than a constant number of protocol instances.

8See, however, the addendum below.
9Again, “padding” can be used here to circumvent this problem. See Section 3 for a description of

the padding approach in the context of the UC model.
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In the Task-PIOA framework. The Task-PIOA framework [CCK+06a, CCK+06b]
proposes a simulation-based security notion that inherits many facets of the UC model.
However, the Task-PIOA model uses different kinds of abstractions (in particular with
respect to process scheduling) and thus allows for more flexible system specifications.
The main focus of the Task-PIOA model thus lies not on polynomial runtime issues;
the model of polynomial-time considered in [CCK+06b] requires that all machines are
a priori polynomial-time per activation (that is, there is no limit on the number of
activations, but in each activation, the running time is restricted by a fixed polynomial in
the security parameter). The problem of two machines activating each other indefinitely
is avoided by requiring the scheduler to only schedule a polynomial number of activations.
This approach inherits many of the flexibility restrictions of the a priori polynomial-time
approach; in particular, it is not possible to formulate a machine that implements a
secure channel without imposing an a priori bound on the length of messages.

Other frameworks. In [Gol07], it is investigated whether the notion of expected
polynomial time allows for composability. Although this question is answered positively,
their approach does not allow machines to run in polynomial time in the length of the
incoming communication. (It must be stated that allowing such protocols was not the
aim of [Gol07], their goal was to give the simulator additional power which is needed in
some settings.)

Summarizing, while previous notions can be used to express many natural protocols
and protocol tasks, there are natural protocol tasks that cannot be expressed by existing
notions (excluding perhaps [HMQU05], although [HMQU05] is not known to support
universal composability).

Addendum. After submitting the initial version of our manuscript, we were made
aware of a revision of the Universal Composability framework [Can08]. This revision
features a modified definition of polynomial runtime that improves upon that of the
earlier UC version [Can05a]. In particular, a suitable variant of the dummy adversary
can be proven complete in the setting of [Can08]. On the other hand, padding of inputs
as described above is still necessary; the examples given in Section 3 apply.

Technically, the revision [Can08] largely follows the earlier version [Can05a]. The
crucial modification is to consider only balanced environments. Essentially, balanced
environments send at least as much (up to a fixed polynomial factor) data to the ad-
versary as to the protocol. A balanced environment thus guarantees that a simulator
is invoked sufficiently often, and with sufficiently long inputs to produce a successful
simulation. (A similar technique has been used in [HMQU05].) This allows to prove
the dummy adversary complete. In particular, the counterexample to the completeness
of the dummy adversary from [Can05a] we point out in Section 3 does not work in the
setting of [Can08]. Our counterexample crucially employs non-balanced environments.

Besides, the notion of a polynomial-time machine is slightly simplified compared to
[Can05a]. This change is technical in nature and keeps the spirit of the definition from
[Can05a]. Specifically, this simplified definition still requires that inputs are suitably
padded in order to allow subprotocol invocations.
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1.6 Organization

After introducing some notation, we review the Universal Composability framework (in
which our work takes place) and the UC composition theorem in Section 2. We motivate
our work by highlighting the problematic aspects of previous polynomial runtime notions
in Section 3. Our own polynomial runtime notion is presented in Section 4. In Section 5
and Section 6, we prove some basic but important properties of our notion, which will
turn out useful in the proof of the composition theorem in Section 7. Section 8 gives an
example of our notion in action. In Section 9, we discuss two variations of our notion.
Finally, Section 10 relates our notion to the standard UC definitions.

1.7 Notation

We say an algorithm A is polynomial-time if A’s runtime is bounded by a polynomial
in the length of A’s first input (assuming that A’s input is a tuple of bitstrings). This
notation facilitates the use of a security parameter k, since we will usually pass 1k

as the first argument. Two ensembles {X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ of
probability distributions are statistically indistinguishable, if there is a negligible function
µ such that for all k ∈ N, z ∈ {0, 1}∗, the statistical distance between X(k, z) and Y (k, z)
is bounded by µ(k). Two ensembles {X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ are
computationally indistinguishable (written X(k, z) ≈ Y (k, z)) if for every nonuniform
probabilistic polynomial-time algorithm C there exists a negligible function µ such that
for all k ∈ N, z ∈ {0, 1}∗ we have that

∣∣Pr[D(1k, z,X(k, z)) = 1]−Pr[D(1k, z, Y (k, z)) =
1]
∣∣ ≤ µ(k).

2 The UC framework

We briefly review the framework proposed by [Can01]. We omit the details that are
orthogonal to our result, for these we refer to [Can01]. An interactive Turing machine
(ITM) is a Turing machine that has additional tapes for incoming and for outgoing com-
munication.10 An ITM may be activated by a message on an incoming communication
tape. At the end of an activation, the ITM may send a message on an outgoing com-
munication tape to another ITM. The recipient of a message is addressed by the unique
ID of that ITM. The actions of an ITM may depend on a global parameter k ∈ N,
the so-called security parameter. (One can, e.g., assume that the security parameter is
stored on a special tape of the ITM.)

A network is modeled as a (possibly infinite) set of ITMs. Such a set of ITMs we

10Actually, the UC framework distinguishes various types of incoming and outgoing communication
tapes, namely tapes for input, output, subroutine invocation, subroutine results, incoming messages and
outgoing messages. These distinctions are necessary to formulate the notion of polynomial-time given in
[Can05a]. However, these distinctions are immaterial for our definition of polynomial time, thus we will
only consider incoming and outgoing communication tapes in this exposition.
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call a system of ITMs.11,12 We call a system S of ITMs executable if it contains an
ITM Z with a distinguished input and output tape. An execution of S with input
z ∈ {0, 1}∗ and security parameter k ∈ N is the following random process: First, Z
is activated with the message z on its input tape. Whenever an ITM M1 ∈ S finishes
an activation with an outgoing message m addressed to another ITM M2 ∈ S on its
outgoing communication tape, the other ITM M2 is invoked with incoming message
m on its incoming communication tape. If an ITM terminates its activation without
an outgoing message the ITM Z is activated. If an ITM sends a message to a non-
existing ITM, Z is activated with that message. Z may send messages in the name of
any non-existing machine.13 When the ITM Z sends a message on its output tape, the
execution of S terminates. The output of Z we denote by EXECS(k, z) (where we set
EXECS(k, z) := 0 if the execution does not terminate).14 Furthermore, by TIMES(k, z)
we denote the total number of steps executed by all ITMs in S. If the execution does not
terminate, we set TIMES(k, z) := ∞. Further we write TIMES(k, z,M) for the total
number of steps executed by the ITM M ∈ S. Given a system of ITMs π (representing
a protocol) and two ITMs Z (environment) and A (adversary) we will usually write
EXECπ,A,Z(k, z) and TIMEπ,A,Z(k, z) for EXECπ∪{A,Z}(k, z) and TIMEπ∪{A,Z}(k, z).

We stress that ITMs are probabilistic machines, in the sense that they possess a
random tape that contains uniformly and independently distributed bits. This makes
EXECS(k, z) and TIMES(k, z,M) random variables, where the probability space is de-
fined by the contents of the random tapes of all machines.

A network without the machine Z and without an adversary (the adversary is simply
defined as being an ITM with a special id) is called a protocol.

Using the above network model, security is usually defined by comparison. We define
an ideal protocol φ (formally a system of ITMs) that usually consists only of one machine,
a so-called ideal functionality. Then we define what it means that another protocol π
(securely) emulates φ.

Definition 4 (UC – classical definition) Let π and φ be systems of polynomial-time
ITMs. We say that π emulates φ if for any polynomial-time ITM A (the adversary)
there exists a polynomial-time ITM S (the simulator) such that for any polynomial-time

11Infinite systems are necessary to allow e.g., for systems where an arbitrary number of instances of a
given ITM can be invoked. In the case of infinite systems we require the system to be uniform in the sense
that given the ID of an ITM, we can compute the code of that ITM in deterministic polynomial-time.

12We stress that this notion of systems differs from the one introduced in [Can05a]. In our setting,
following [Can01], a system of ITMs is plainly a set of machines. In the setting of [Can05a], a system
contains an initial ITM and a so-called control function; all other ITMs come into existence when the
initial ITM specifies their code (in a sense, the initial ITM “programs” the other ITMs). Specifically,
[Can01] allows machines that “pop up into existence,”while we do not. Again, this is no restriction (since
we allow infinite sets of ITMs), but simply a more static way to think about protocol executions. This
will make it easier for us to specify runtime properties of systems of ITMs. We stress that our results
apply analogously when using the modeling from [Can05a] where ITMs are created dynamically.

13We allow Z to impersonate non-existing ITMs to simplify the formulation of Definition 10 below.
14Since our modeling will guarantee that all valid systems will terminate with overwhelming proba-

bility, the value of EXECS(k, z) in the case of non-termination is unimportant. We arbitrarily fix 0 for
concreteness.
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ITM Z (the environment) the following families of random variables are computationally
indistinguishable:

{
EXECπ,A,Z(k, z)

}

k∈N,z∈{0,1}∗
and

{
EXECφ,S,Z(k, z)

}

k∈N,z∈{0,1}∗

Note that for this definition to be complete, we have to specify what we mean by
polynomial-time machines. In classical definitions of UC [Can01], polynomial-time ma-
chines are assumed to run a polynomial number of steps in the security parameter (we
call this a priori polynomial-time; cf. Definition 8 below). Other approaches define other
meanings of polynomial-time, see e.g., [Can05a].

For a complete definition of the UC framework, many more details must be specified,
e.g., how secure and insecure channels are modeled, how messages are scheduled, how
the adversary can corrupt parties, etc. Since these aspects are orthogonal to the results
in this paper, we refer the interested reader to [Can05a].

2.1 The Composition Theorem

Arguably, one of the most important properties of the UC framework is its universal
composition theorem. The composition theorem guarantees that whenever a protocol π
emulates some ideal functionality F , we can use π instead of F in any larger protocol
context without losing security.

We will illustrate this with a small example. Assume that FCOM is a functionality
for commitments (it is not necessary for this example to know how this functionality is
designed). Assume further that we are given some protocol π that emulates FCOM. Now
we design a protocol ρFCOM that uses the ideal commitment FCOM and implements some
more complex functionality G. Since FCOM is an ideal commitment, no cryptography is
involved in using FCOM (in particular, we have perfect hiding and binding properties).
This greatly simplifies the proof that ρFCOM implements G. In some cases, ρFCOM might
not use any cryptography at all, and the security proof can be done by an information
theoretical argument. Unfortunately, since FCOM is an ideal assumption, ρFCOM cannot
be implemented in a real life setting. Instead one has to replace all calls to FCOM by calls
to the protocol π. The question arises whether the resulting protocol ρπ still securely
emulates G.

Here the universal composition theorem of the UC framework comes into play. It
guarantees that if π emulates F , then ρπ emulates ρF . Since we also know that ρF

emulates G, it follows that ρπ implements G (using the transitivity of the security notion)
and hence ρπ is a secure protocol for the task described by G.

Note that without the composition theorem, we would have had to analyze ρπ in one
go instead of analyzing the simpler protocols π and ρF individually.

In order to state the universal composition theorem, one first needs to define the
operation of composing, i.e., one needs to specify the meaning of constructions of the
form ρπ. We will now give an informal definition and refer to [Can05a] for details.

Definition 5 (Composition – informal) Let a protocol π and a protocol ρ be given.
Assume that the machines in ρ send messages to the machines in π. Then let ρπ be
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the protocol that contains the machines from π and from ρ. In ρπ, the machines in
π are modified such that instead of expecting messages from the environment Z and
sending messages to Z, they expect messages from machines in ρ and send the answers
to machines in ρ. (That is, π plays the role of the environment for ρ.) Furthermore,
ρ can invoke arbitrarily many instances of π. We assume that the invocations of π are
tagged with a session id that identifies the instance of π, and that the answers produced
by an instance of π carry the same session id. New instances of π spring into existence
whenever a new session id is used for the first time (by ρ or by the adversary).15

This definition also specifies the meaning of ρF for an ideal functionality F since a
functionality is just a special case of a protocol.

Note that ρ is allowed to invoke arbitrarily many instances of π. In our example
above, this would mean that ρ is allowed to use an arbitrary number of commitments
instead of just a single one.

Using this notation, we can formulate the universal composition theorem of [Can05a].

Theorem 6 (Universal composition theorem) Let π, φ, and ρ be a priori polynomial-
time protocols. Assume that π emulates φ. Then ρπ emulates ρφ.

There is also a weaker variant of the universal composition theorem, which we call
the simple composition theorem. Here we require that ρ invokes only one instance of π
or φ, respectively.

Note the restriction that π, φ, and ρ have to be a priori polynomial-time. It is easy
to see that the composition theorem does not hold if no computational restriction is put
on these protocols.16 Yet, the restriction to strict polynomial time is a strong one; one
of the goals of this paper is to find a variant of the UC definition where this restriction
is relaxed.

We give a short proof sketch of the universal composition theorem from [Can05a] to
enable comparisons with our proof of the universal composition theorem in the case of
reactive polynomial time (Section 7).

Proof sketch (of Theorem 6). Assume π, φ, and ρ as in Theorem 6, and let
A denote the dummy adversary, i.e., an adversary that only executes orders from the
environment Z, and reports its own view to Z. By assumption, π emulates φ, so that
there exists a simulator S such that

EXECπ,A,Z ≈ EXECφ,S,Z (1)

for all a priori polynomial-time environments Z. (Here ≈ denotes computational in-
distinguishability.) Hence, informally, S emulates attacks on (one instance of) π, while
actually running with (one instance of) φ.

15Formally, all possible instances of π are already present from the beginning and are only activated
if needed. This is the reason why we need systems to be possibly infinite. However, for the intuition it
is often easier to assume that machines are created when needed.

16Even if π emulates φ, the protocols might be distinguishable by an unbounded machine. Then an
unbounded ρ can be constructed that determines whether it is running as ρπ or ρφ and gives different
output accordingly.
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Our goal is to show that ρπ emulates ρφ. The dummy adversary is complete in the
sense that without loss of generality, it is the only adversary that needs to be considered
(see Section 6 for a detailed discussion). Hence it suffices to construct a simulator S∞

with
EXECρπ ,A,Z ≈ EXECρφ,S∞,Z (2)

for any a priori polynomial-time Z.
Recall that the dummy adversary A only collects information and executes orders.

Hence, the dummy adversary A attacking ρπ can be seen as a combination of several
dummy adversaries, namely dummy adversaries Ai that only attack one instance of sub-
protocol π each, and a dummy adversary Aρ that only attacks ρ itself. (See Figure 1(a).)
Each Ai is “responsible” for messages from one π-instance.

We will construct S∞ as a combination of Aρ and several S-instances, one for each
invoked instance of subprotocol φ. Similarly to protocol ρπ, each Si is responsible for
messages from one φ-instance in ρφ. (See Figure 1(b).) Since each S-instance by as-
sumption simulates attacks performed on one π-instance, while running together with
one φ-instance, this intuitively achieves that S∞ simulates attacks on many π-instances,
while running together with many φ-instances.

Now the only difference between ρπ and ρφ is precisely that in ρπ, all φ-instances of ρφ

have been replaced with π-instances. Hence, S∞ simulates attacks on ρπ, while actually
running with ρφ. To formally show that this holds, we have to reduce the fact that S∞

is a good simulator to our assumption, namely the fact that S is a good simulator.
To this end, we will assume an arbitrary environment Z and show that

EXECρπ ,A,Z ≈ EXECρφ,S∞,Z . (3)

We apply a hybrid argument. Namely, consider the hybrid network Hl which is a “mix”
of real and ideal network in the following sense. Hl consists of Z and ρ, where the
first l of ρ’s subprotocol invocations are connected to an instance of φ (with simulator
Si), and the remaining subprotocol instances are connected to an instance of π (with
dummy adversary Ai). The situation is depicted in Figure 1(c). In this notation, (3) is
equivalent to

EXECH0 ≈ EXECHp(k)
,

where p(k) is the number of subprotocol instances that ρ invokes. We will show (3) by
a hybrid argument. More specifically, we will show that for 0 ≤ l ≤ p(k), we have

EXECHl
≈ EXECHl+1

. (4)

Informally, this means that“changing one subprotocol instance from π to φ does not make
a difference.” However, our assumption that π emulates φ guarantees that changing a
single subprotocol instance from π to φ does indeed not make a difference. All that
remains is to formalize this intuition.

We thus build an environment Z∗
l that encompasses the whole hybrid network Hl,

only without the (l + 1)-th subprotocol instance (the part of Figure 1(c) enclosed by a
dashed line). Hence, running Z∗

l with π and A yields an execution of Hl, and running
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Z∗
l with φ and S yields an execution of Hl+1. Our assumption (1) on S hence guarantees

that
EXECHl

= EXECπ,A,Z∗
l
≈ EXECφ,S,Z∗

l
= EXECHl+1

,

which shows (4). Hence (3) holds, which means that we have proved our goal (2).
Finally, we also have to prove that our constructed simulator S∞ is allowed in the

sense that S∞ is polynomial-time as required by Definition 4. For a priori polynomial-
time notions this is usually easy to verify, since the combination of polynomially many
polynomial-time machines always yields a polynomial-time machine.

3 Difficulties with prior notions

In order to illustrate the difficulties that can arise when trying to model polynomial
time in UC-like notions, we will sketch a few of the problems that arise in prior no-
tions of polynomial time. We will concentrate on difficulties with the UC framework of
[Can05a]. However, we stress that we simply chose this example since [Can05a] is the
most well-known and popular model. For instance, in the Reactive Simulatability (RSIM)
framework [BPW04b], some of these issues are solved using so-called length-functions
which are also known to lead to difficulties (see, e.g., [HMQU05]).

Network model. We first sketch very roughly how polynomial time is modeled in
[Can05a]. Our description is far from complete but it should be sufficient to understand
the examples below. The ITMs in a network are arranged in a hierarchy of invocation.
The top level contains the environment Z. The second level contains the machines
directly invoked by Z, namely the adversary (or simulator) and the protocol machines.
Further levels might include subroutines of the protocol machines (these subroutines
may, e.g., result from the composition, in this case they are the ITMs comprising the
subprotocol). Finally, the lowest level will usually contain the functionalities, which are
modeled as subroutines shared by different ITMs. There are two kinds of communication
in the network. We have vertical communication between a machine and its subroutines,
called subroutine input and subroutine output. And we have horizontal communication
between different machines, which represents messages sent over the network. Commonly,
these messages will be sent between machines on the same level or between machines on
any level and the adversary. The adversary communicates with the environment using
vertical communication (since protocol and adversary are considered subroutines of the
environment), and with protocol machines using horizontal communication (since this
represents communication over the network). The auxiliary input of Z is considered a
subroutine input for Z.

Polynomial time definition. In this setting, we model polynomial time by requiring
the following property of any ITM in the network (cf. Definition 3 in [Can05a] for details
and motivation):

Definition 7 (Canetti-PPT) An ITM M is PPT in the sense of [Can05a] (short:
Canetti-PPT) if and only if M runs in time which is polynomial in n := k+nI−nO−k·nN .
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Figure 1: Relevant networks for the proof of Theorem 6. (a) depicts environment Z,
running with protocol ρπ and dummy adversary A. For presentation, A is split up
into dummy adversaries Aρ and Ai for protocol ρ and all respective π-instances. (b)
illustrates Z running together with ρφ and the simulator S∞ constructed during the
proof. For presentation, S∞ is split up into adversaries Aρ and Si for ρ and the respective
φ-instances. (c) shows (surrounded by a dashed line) the hybrid environment Z∗

l used
in the reduction that proves the settings (a) and (b) indistinguishable (from Z’s point
of view).
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(That is, there is a fixed polynomial p such that the number of M ’s computational steps
taken so far never exceeds p(n).) Here k is the security parameter, nI the total length
of the subroutine inputs received from a higher level, nO the total length of subroutine
outputs passed to a lower level, and nN the number of ITMs that M communicates with.

Note that we will always have nO ≤ nI (since otherwise n < 0), i.e., we cannot send
longer inputs to subroutines than we get from a higher level. This is why it is necessary
that Z gets some initial subroutine input, namely the auxiliary input.

Padding. At a first glance it might seem that the requirement that no ITM can
call subroutines with inputs longer than the inputs of that ITM itself is very restrictive.
However, this is solved by the use of padding: when designing a protocol and the cor-
responding ideal functionality, one requires all inputs to contain a padding of sufficient
length such that the protocol machines are able to call their subroutines/functionalities.
For example, a functionality F for secure message transmission would expect an input
of the form (m, 1t(|m|)) where t is a polynomial that depends on the protocol we would
like to use to implement F . Although an explicit treatment of this padding can be cum-
bersome in some cases, it at least allows to write protocols without an a priori bound
on their runtime.

However, an example for a protocol where the use of padding meets its limits is the
case of the database functionality D described in Section 1. This functionality represents
a publicly available centralized database. The functionality D accepts queries of the form
(store, key, data) and (retrieve, key). Upon retrieve, the data previously stored with
key is returned. As a functionality, this machine is Canetti-PPT even without any
padding (it does not invoke subroutines, so nO = 0, and thus the functionality is allowed
to run in polynomial time in the total length of the queries).

However, even simple protocol machines that use the database D may not be poly-
nomial-time any more. For instance, consider a party P1 that wants to copy the entry
stored at key1 to key2. With the current specification of the database functionality, this
is only possible by retrieving the data data stored at key1 and then storing data under
key key2. However, to do so, P1 needs to run Ω(|data|) steps. Thus the input (e.g.,
from the protocol environment Z) of P1 needs a padding whose length is dependent
on l := |data|. For one, this length l might not be known in advance (it depends on
the inputs of other protocol parties), so it is unclear how to specify the length of the
padding P1 expects. It seems possible to interactively let P1 ask its own environment for
a suitably long padding depending on the size l of the database entry. However, these
solutions are (seemingly unnecessarily) cumbersome and might make the analysis more
complicated. Furthermore, even if we would model P1 to have an interactive protocol
interface that, e.g., first requests additional padding of sufficient length and then copies
the data, this might have implications on the simulatability of the protocol: in some
cases, whether and to what extent the database is used might have to be hidden from
the environment; for example, if in the real and the ideal model, a different number of
queries to the database is performed by some larger protocol.

Dummy adversary and composition. A very instructive case is the question
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whether the dummy adversary is complete. Intuitively, the dummy adversary is an
adversary that simply does what it is told by the environment and forwards all messages
received from the protocol to the environment. By completeness of the dummy adversary
we mean that it is sufficient to consider only the dummy adversary as a real adversary
A in the UC security definition Definition 4. (See Section 6 for a detailed exposition.)
Validity17 and completeness of such a dummy adversary is crucial for the proof of the
Universal Composition Theorem. Unfortunately, a machine as in Definition 16 that just
forwards messages in both directions is not Canetti-PPT (i.e., it is not valid) since it may
have to forward messages that come from the protocol, i.e., via horizontal communication.
In order to handle this problem, [Can05a] proposes to define the dummy adversary Ã as
follows:

• When asked by the environment Z to send a message m to the protocol, that
message m is sent. (Since A is a subroutine of Z, this is permitted.)

• When receiving a messagem from the protocol, the adversary Ã first sends l := |m|
to Z. If it then receives 1l from Z, it sends m to Z.

This definition now allows to forward arbitrary messages, however, it raises the following
difficulties: First, it is very sensitive to the machine and network model. In particular,
for Ã to compute l = |m|, it is necessary that messages are always prefixed with their
length (otherwise Ã will take time Ω(l) for measuring l). Further, it is necessary that m
is still accessible when 1l is received from the environment, although Ã did not have the
runtime to copy m to some working tape. However, assuming a suitable machine model,
these problems are easily solvable. More problematic is the second difficulty: The dummy
adversary is not complete, i.e., security with respect to the dummy adversary does not
imply security with respect to arbitrary Canetti-PPT adversaries.18 Note that this poses
a problem for two reasons: First, the dummy adversary is a very useful construct when
proving the security of concrete protocols, allowing to consider only a single adversary,
and second, the proof of the Universal Composition Theorem in [Can05a] uses the dummy
adversary in an integral way (however, we do not know whether only the proof or the
theorem itself is invalidated).

To see that the dummy adversary from [Can05a] is really not complete (in contrad-
ication to [Can05a, Claim 10]), assume a function f with the following property: We
have |f(t, x)| = |x|, and f(t, x) can be computed in time polynomial in t + |x|, but
for any polynomial p, there is a polynomial p̃ such that f(p̃(k), x) cannot be computed
probabilistically in time p(k) given a uniformly chosen x ∈ {0, 1}k. (more exactly, in
time p(k), the probability of guessing f(p̃(k), x) is negligible). A candidate for such a
function would be, e.g., applying some suitable hash function t-times to x.

We then define the protocol π to expect a message (1t, x) with |x|, 2t ≤ k from Z

17We say that an adversary A is valid if A is considered in the (UC) security definition, i.e., if A is in
the set of “allowed” adversaries.

18This contradicts Claim 10 on page 45 of [Can05a]. The mistake in their proof was the assumption
that the simulator S constructed there is always Canetti-PPT.
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and then to send (1t, f(t, x)) to the adversary.19 Further, we define the protocol φ to
expect a message (1t, x) with |x|, 2t ≤ k from Z and then to send (t, x) to the adversary.
Note that both π and φ are Canetti-PPT.

First, we show that π emulates φ with respect to the dummy adversary. The dummy
adversary first sends the number t + |f(t, x)| = t + |x| to the environment and only
when receiving 1t+|x|, it sends (1t, f(t, x)) to the environment. Thus the corresponding
simulator also sends t + |x| to the environment, and when receiving 1t+|x|, it computes
f(t, x) and sends (1t, f(t, x)) to the environment. The simulator is Canetti-PPT since
computing f(t, x) and sending (1t, f(t, x)) takes time polynomial in the length of 1t+|x|.

Now, we show that π does not emulate φ with respect to arbitrary Canetti-PPT
adversaries. For a polynomial p̃, let Zp̃ be an environment that chooses a random
x ∈ {0, 1}k and sends (1p̃(k), x) to the protocol. Let A be an adversary, that upon
receipt of (1t, f(t, x)) forwards f(t, x) to the environment. Now a suitable simulator
has to compute f(t, x) from (t, x). Since the simulator has a fixed runtime polynomial p,
there is a p̃ such that f(p̃(k), x) cannot be computed in time p(k). Thus, in an interaction
with Zp̃, that simulator will return f(t, x) = f(p̃(k), x) only with negligible probability,
allowing Z to distinguish real and ideal model. Thus π does not emulate φ.

Dummy parties. A useful construct in UC-like security definitions is that of a
dummy party. Such a dummy-party is used when considering a single ideal functionality
as the protocol, for each player we then introduce a dummy-party that forwards the
messages between the functionality and the environment. These parties are very useful,
e.g., for modeling corruptions (in particular in the adaptive case) in the ideal model.
(In [Can05a] such dummy-parties are introduced on page 51 under the caption “Ideal
protocols”.) However, since dummy-parties have to forward messages from the function-
ality to the environment, they are not Canetti-PPT. An interactive padding convention
would have to be introduced similar to those used with the dummy adversary, but in
this case the same padding convention would have to be followed by the parties in the
real protocol since otherwise the environment could trivially distinguish the real and the
ideal model.

Combining machines. A technical tool that is needed in many situations when work-
ing with UC-like security definitions is to construct a machine that simulates internal
submachines. As noticed by [Bac02], the resulting machine is not polynomial-time, at
least with respect to an a priori polynomial-time notion as in [Can01]: Assume that a
machine M simulates two submachines M1,M2. Assume further that n messages are
sent to M where n is larger than the runtime polynomial of M . Then M will, since
it is a priori polynomial-time, have to stop even reading incoming messages. If then a
message is sent to M2, M will not be able to notice and answer. Since given two separate
machines M1,M2, M2 will not stop reacting just because we send many messages to M1,
it follows that M does not correctly simulate M1,M2.

Summary. We want to stress again that the problems mentioned in this section

19Depending on the exact machine model, we might also send 1t and f(t, x) in two separate messages
if receiving a very long 1t might make accessing f(t, x) impossible.
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do not compromise the essence of the results of [Can05a]. E.g., probably no “reason-
able” cryptographic protocol will fail to compose because of quirks in the modeling of
polynomial time; most results in the UC setting are robust with respect to the details
of the modeling. However, to put these results on exact and rigorous foundations, it
is necessary to develop a model of polynomial time that does not lead to any formal
inconsistencies.

4 Our definition of polynomial runtime

In order to define a computational security notion, we first have to fix a definition of
polynomial time. Classically, an ITM is considered to be polynomial-time if it runs in
polynomial time in the security parameter. This notion we will call a priori polynomial
time:

Definition 8 (A priori polynomial time) An ITM M runs in a priori polynomial
time if there is a polynomial p such that for any sequence of incoming messages, M runs
at most p(k) steps with probability 1 upon security parameter k.20

However, as seen in the introduction, this definition is far from being flexible enough.
Many protocols that are intuitively considered to be polynomial-time are rejected by
this definition, e.g., a secure channel functionality or a database. Investigating these
examples, we see that what we intuitively expect from a polynomial-time protocol is
that when the protocol is used in an a priori polynomial-time context, the whole system
still runs in polynomial time. For example, although a channel is not a priori polynomial-
time (cf. Section 1.3), a channel can be implemented in polynomial time if the messages
sent through it are generated by an a priori polynomial-time machine.

To capture even more protocols, we can slightly relax the condition, and only re-
quire that the whole system runs in polynomial time with overwhelming probability.21

The resulting notion is maybe the weakest notion of polynomial time that still makes
sense. Any weaker definition would allow for protocols that interact with an a priori
polynomial-time environment and run a superpolynomial number of steps with non-
negligible probability. We call this notion reactive polynomial time, and it is formalised
by the following two definitions.

Definition 9 (Polynomial time with overwhelming probability) An executable sys-
tem S of ITMs runs in polynomial time with overwhelming probability if there is a
polynomial p and a negligible function µ such that for all k ∈ N, z ∈ {0, 1}∗ we have
TIMES(k, z) > p(k) with probability at most µ(k).

Definition 10 (Reactive polynomial time) A system S of ITMs runs in reactive
polynomial time if for any a priori polynomial-time ITM Z the system S ∪ {Z} runs in
polynomial time with overwhelming probability.

20Remember that the program of M may depend on the globally known security parameter k.
21It turns out that this relaxation is indeed necessary for our security notion, see Section 9.1.

27



We remark that in this definition, S can impersonate any machine that the machines in
S could ever run with (cf. footnote 13). For example, if S is a protocol and does not
contain an adversary, then Z also controls messages that are sent over the (insecure)
network (by impersonating the adversary). And if S already contains an adversary, then
Z can only control the protocol inputs and outputs. In particular, Definition 10 makes
sense both for protocols S without adversary, and systems S that include a protocol and
an adversary.

We will comment below (after giving the security definition) on how easy it is to
show that a system is reactively polynomial-time.

Why the generality? One of the main features (and design goals) of Definition 10
is its permissiveness. Essentially, Definition 10 stipulates only that a protocol should
“behave well” in any (a priori) polynomial-time context. One particularly instructive
example on the benefits of such a permissive notion is the case of a repeater machine.
Namely, consider a machine R that simple relays its input verbatim to a dedicated
output channel. Repeaters are“natural”machines in the sense that inserting them into an
existing protocol should intuitively not make any difference. At the same time, repeaters
can be powerful technical tools: the dummy adversary (see the proof of Theorem 6) is
essentially a repeater; besides, during security proofs, it can be useful to insert a repeater
to “split up a party in two”. A similar case can be made for secure channels, which can
be thought of as repeaters that hand extra information (e.g., the message length) to the
adversary.

It is easy to see that Definition 10 allows repeaters or secure channels even as stand-
alone protocols. On the other hand, as we briefly outline in Section 3, secure channels
(and also repeaters) are not Canetti-PPT without modifications. Of course, one could
think of augmenting, say, the Canetti-PPT runtime definition to explicitly consider re-
peaters as “polynomial-time.” However, explicitly allowing repeaters would still only
permit machines that are precisely repeaters, but not machines that are “essentially”
repeaters, such as a secure message transmission functionality. Similarly, the dummy-
adversary, who is essentially a repeater, would not be precisely a repeater, because it
does some multiplexing and header-rewriting (messages to/from all machines of the
protocol are forwarded through a single “connection” to the environment).

Of course, one could relax the definition of a repeater and explicitly allow certain
forms of recoding and multiplexing. But it would seem that the resulting definitions
would not be very simple any more, and in particular would be more difficult to use.
More generally, in Section 3 (on page 24), we give another, more complex example of
a functionality that requires the generality offered by Definition 10. Concretely, we
provide a natural database functionality that is reactively polynomial-time, but cannot
be directly modeled as Canetti-PPT.

Closure properties of reactive polynomial time. Notice that the notion of reac-
tive polynomial time is not closed under the composition of networks. More precisely, if
we have two reactively polynomial-time systems S1, S2 of ITMs, then S1 ∪ S2 is not nec-
essarily reactively polynomial-time. For example, S1 could contain a machine R1 that,
when receiving a message x from any machine, sends x to a machine R2 (not contained
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in S1). And S2 could contain a machine R2 that, when receiving a message x, forwards
x to R1. Both S1 and S2 are easily seen to be reactively polynomial-time. But in S1∪S2,
as soon as R1 receives a message x (say, from the environment), R1 and R2 enter an
infinite loop in which they forward the message x to each other. (A more drastic case
would be the one where R1, given x, forwards x‖x, a string of twice the length.)

Such a lack of closure can, of course, be troublesome, because it implies that whenever
we compose protocols or networks, we need to check again that the resulting system is
reactively polynomial-time. We believe, however, that this lack of closure is a necessary
evil: If we wish to admit all networks that are “intuitively polynomial-time”, we have to
admit networks such as S1 and S2. Notice that each of them, on its own, is harmless; the
bad (non-polynomial-time) behavior arises only from the interaction of the two. Thus,
unless we wish to impose strong conditions on the networks, we have to accept the lack
of closure properties.

In the results of this paper the issue is handled by an extra condition in the composi-
tion theorem (Theorem 21) that requires us to check whether the composed protocol is
reactively polynomial-time before applying the composition theorem. See the discussion
on page 39; there we also discuss how our results apply to more restricted classes of
protocols that are closed under composition.

Is the notion too permissive? At a first glance, this notion might seem too per-
missive (i.e., too general). One might argue that the system S is allowed a running time
k2

c
, where kc is the running time of Z for some constant c. It might seem that such

constructions lead to too powerful a system S of possibly exponential runtime. However,
this is not the case, since our definition guarantees that the overall network, and thus
in particular S, will always run in polynomial time in k (Lemma 12 below). The seem-
ing power only stems from the fact that the polynomial that bounds the running time
may depend on Z, thus there is no polynomial p independent of Z such that S runs in
polynomial time in p(k + t) where t is the running time of Z.

We remark that this absence of a uniform polynomial bound p reflects the modeling
of existing notions of zero-knowledge and simulatability. For example, in [Gol01], the
definition of (non black-box) zero-knowledge is—roughly—formulated as follows: for
any polynomial-time verifier there is a polynomial-time simulator such that the verifier’s
and the simulator’s output is indistinguishable. In particular, the running time of the
simulator does not have to be polynomially bounded in the running time of the verifier.
Instead, it is only required that if the verifier runs in polynomial time, so does the
simulator. In particular, the simulator might run, e.g., tlogk t steps22 where t is the
running time of the (simulated) verifier and k the length of the common input x. This
is analogous to our modeling if we identify the verifier’s runtime with that of Z and the
length of the common input with the security parameter.

However, if a uniform bound on the running time of S is needed, it is possible to
strengthen the notion in a way that disallows an arbitrary dependency on Z’s complexity.
Namely, a stricter definition, called uniform reactive polynomial time, is also conceivable:

22Note that this should not be confused with the quasipolynomial tlog t which would not be allowed.
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The runtime of S has to be bounded by p(k+ q) with overwhelming probability where q
is the runtime of Z and p is a polynomial independent of Z. (In contrast, Definition 10
allows p to depend on Z.) Indeed, uniform reactive polynomial time is as suitable a
notion of polynomial time as reactive polynomial time, and we show in Section 9.2 that
the results of this paper also hold for that notion. We have chosen Definition 10 as
our main notion because—although this may not be obvious at a first glance—it better
reflects how polynomial-time is classically modeled in cryptography. We want to stress
however, that this is just a design choice and that we prove all our results for both
notions.

Why allow a negligible error? In Definition 10 we have introduced the notion of a
reactively polynomial-time network S roughly as follows: For any ITM Z, the network
S ∪ {Z} is polynomial-time with overwhelming probability. However, the reader might
question whether the additional generality of allowing networks that run in superpoly-
nomial time with negligible probability is not offset by the added complexity. Instead,
we could require S ∪ {Z} to be a priori polynomial-time; the resulting notion we call
strong reactive polynomial time. Replacing reactive polynomial time by strong reactive
polynomial time in Definition 11, we get a seemingly simpler security definition. Un-
fortunately, it can be shown that the resulting security definition does not fulfill the
Universal Composition Theorem (Theorem 21). See Section 9.1 for additional details
and proofs.

After giving the security definition, we will comment on why we do not allow a
negligible error in the runtime guarantees of the context Z. (Essentially, the answer is:
“because we would not gain anything.”)

Security notion. Equipped with the notion of reactive polynomial time, we can now
look for a variant of the UC notion that can handle arbitrary reactively polynomial-time
protocols (i.e., we want that all the usual properties like the composition theorem hold
for reactively polynomial-time protocols). To design such a UC variant, we first have
to specify what machines should be considered valid adversaries and simulators. With
classical notions, a valid adversary/simulator would run in a priori polynomial time.
However, this is not sufficient in our context, since in this case the adversary/simulator
might have to terminate before the protocol. In this case the real protocol might continue
to work without adversary, whereas the ideal protocol might rely on a simulator, making
a successful simulation impossible (examples for such ideal protocol tasks are the public-
key encryption functionality FPKE and the signature functionality FSIG, cf. [Can01]).
Hence, we instead try to find the largest class of adversaries/simulators for a given
protocol such that the definition still makes sense, i.e., such that the overall system does
not run in superpolynomial time. Obviously, we minimally require that the adversary
and the protocol together are still reactively polynomial-time. It will turn out that this
requirement is also sufficient to get the properties we expect from a UC notion (see
the following sections). We therefore call an adversary/simulator valid if the network
consisting of adversary/simulator and the real/ideal protocol is reactively polynomial-
time. Finally, we have to specify which environments to allow. To ensure that the overall
protocol is still at least polynomial-time with overwhelming probability, we require an
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a priori polynomial environment. Note that in contrast to the adversary/simulator, an
a priori polynomial-time environment is fully sufficient, since intuitively its task is to
observe whether there is some polynomial p such that the real and the ideal protocol can
be distinguished within time p. Combining these observations into a single definition, we
propose the following variant of the UC definition that can handle reactively polynomial-
time protocols:

Definition 11 (UC with respect to reactive polynomial time) We say an ITM
M is valid for π (or φ) if π ∪ {M} (or φ ∪ {M}) runs in reactive polynomial time.

Then π emulates φ (with respect to reactive polynomial time) if for any ITM A
that is valid for π, there is an ITM S that is valid for φ such that for every a priori
polynomial-time ITM Z the following families of random variables are computationally
indistinguishable:

{
EXECπ,A,Z(k, z)

}

k∈N,z∈{0,1}∗
and

{
EXECφ,S,Z(k, z)

}

k∈N,z∈{0,1}∗

In the following, we will simply say “UC” and “emulate” instead of “UC/emulate with
respect to reactive polynomial time”.

Note that there might be other possibilities how to model a UC definition that can
handle reactively polynomial-time protocols (e.g., one could define that an adversary A
is valid if for all reactively polynomial-time protocols π, the network π∪{A} is reactively
polynomial-time). However, all other variants the authors have considered seem to break
at least one of the properties that we minimally expect from a viable UC variant (i.e.,
the composition theorem holds, the relation is transitive and reflexive, and no networks
running in superpolynomial time with non-negligible probability occur).

Note further that we only claim that our security definition makes sense when con-
sidering reactively polynomial-time protocols. If we apply the definition to unbounded
protocols, unexpected effects may occur (e.g., the set of valid adversaries may be empty).

Why not allow a negligible error for the runtime bounds of the protocol con-
text? Given that it is essential to allow a negligible error for the runtime bounds of
protocol and adversary, the question arises why the runtime bound for the protocol con-
text Z in Definition 11 has to hold with probability 1 (by Definition 8). Alternatively,
one could allow environments Z that run in polynomial time only with overwhelming
probability. We do not pursue this variation further because it leads to an equivalent
Definition 11: Any Z that runs in a priori polynomial-time except with negligible prob-
ability µ(k) can be substituted with an a priori polynomial-time Z ′ that behaves like Z,
except with probability µ(k). Hence Z ′ distinguishes real and ideal protocol whenever
Z does.

Similarly, one might allow Z to run in a posteriori polynomial time (see page 11).
This would lead to an equivalent Definition 11, too, by an argument analogous to that
given in footnote 6.

And if we instead quantify over environments Z that are APPT-BC (cf. page 12),
then we might loose completeness as no guarantees can be made about the running time
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of Z when running with π ∪ {A} or φ ∪ {S} (since these networks are not necessarily a
priori polynomial time).

How easy is it to show reactive polynomial time? Since we are interested in
actually analyzing protocols, it is crucial that it is easy to check whether a given protocol,
adversary or simulator is allowed in our setting. For all concrete protocols and ideal
functionalities that we are aware of, this is easy to check: these protocols consist of a
fixed polynomial number of rounds (for each protocol invocation or input) with messages
and running time that are of polynomial size in the respective protocol input. (Ideal
functionalities are generally even easier to handle, since they consist only of one machine.)
Thus we immediately get that the protocol runs in polynomial time with any a priori
polynomial-time Z. The validity of adversaries and simulators may, at first glance, be
harder to verify. After all, nothing is known a priori about a real adversary A, and it is
not immediately clear how the complexity of A would be in, say, a blackbox simulation
inside the corresponding simulator S.

Fortunately, there is a very simple real adversary, the so-called dummy adversary
that we can restrict ourselves to, cf. Section 6. It suffices to give a good simulator for
this dummy adversary. Thus, security can be proven by analyzing only a single simulator.
All concrete constructions of such simulators that we are aware of are in fact valid in the
sense of Definition 11. (In fact, since in many simulator descriptions occurring in the
literature, there is no discussion of when the simulator actually halts, they may not be
considered polynomial-time in any of the stricter notions of polynomial time occurring
in prior work.)

Relation to classical notions. Furthermore, the reader might ask in what relation
our notion stands to the classical UC definitions. Since the classical definitions are not
meaningful for protocols that are not a priori polynomial-time, we are interested in the
case that π and φ are a priori polynomial-time protocols. In this case, it turns out that
UC with respect to reactive polynomial time lies strictly between two common classical
definitions: UC and specialized-simulator UC23. That is, if π emulates φ with respect to
classical UC, this strictly implies that π emulates φ with respect to reactive polynomial
time, which in turn strictly implies that π emulates φ with respect to classical specialized-
simulator UC. We believe that the fact that UC with respect to reactive polynomial time
lies strictly between two established notions gives additional evidence that our notion
indeed captures intuitive security requirements. See Section 10 for additional details and
proofs.

5 Basic properties

In this section, we state some simple but important properties of our definition.

23Specialized-simulator UC is defined like UC, with the difference that the simulator may depend on
the environment. We stress that we consider the specialized-simulator UC notion as defined by [Lin03],
which is not equivalent to the UC notion from [Can05a]. There also exists a specialized-simulator UC
variant in [Can05a] that is equivalent to standard UC (see [Can05a, Claim 12]).
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Efficient executions. The first lemma guarantees that the executions EXECπ,A,Z

and EXECφ,S,Z that are considered in Definition 11 do not run in superpolynomial time.

Lemma 12 Let π be a (not necessarily reactively polynomial-time) protocol, A an ad-
versary or simulator that is valid for π, and Z an a priori polynomial-time environment.
Then there is an a priori polynomial-time probabilistic Turing machine M such that
M(1k, z) and EXECπ,A,Z(k, z) are statistically indistinguishable in k.

Proof. Since A is valid for π, π ∪ {A} is reactively polynomial-time. Since Z is a priori
polynomial, it follows that π∪{A,Z} is polynomial-time with overwhelming probability.
So there is a polynomial p such that TIMEπ,A,Z(k, z) < p(k) with overwhelming proba-
bility. By letting M(1k, z) simulate EXECπ,A,Z(k, z) for at most p(k) steps, the lemma
follows. �

Reflexivity and transitivity. A very important property of UC-type security def-
initions which is often underestimated is that the relation of emulation is reflexive and
transitive. A non-reflexive relation (i.e., a protocol does not emulate itself) would at
least raise some doubts about the meaningfulness of the definition.24 A non-transitive
relation strongly lessens the usefulness of the composition theorem. For example, a typi-
cal use case of the composition theorem is the following: We have that π emulates φ and
ρφ emulates τ (where φ and τ usually are ideal functionalities). Using the composition
theorem we then get that ρπ emulates ρφ which emulates τ . By transitivity, it follows
that ρπ emulates τ . It may seem that transitivity is a trivial property, but surprisingly
many of our approaches failed this property.

Lemma 13 (Reflexivity, transitivity) Let π, φ and ρ be protocols. Then π emulates
π (reflexivity), and if π emulates φ and φ emulates ρ, then π emulates ρ (transitivity).

Proof. We first show reflexivity: If A is a valid adversary for π, then S := A is a valid
simulator for π, and for all Z we have EXECπ,A,Z = EXECπ,S,Z , so π emulates π.

We now show transitivity: Let A be a valid adversary for π. Then, since π emu-
lates φ, there is a valid simulator S for φ such that EXECπ,A,Z and EXECπ,S,Z are
computationally indistinguishable for all a priori polynomial-time Z. Then A′ := S is
a valid adversary for φ, so since φ emulates ρ, there is a valid simulator S ′ for ρ such
that EXECφ,A′,Z and EXECρ,S′,Z are computationally indistinguishable for all a priori
polynomial-time Z. Using the transitivity of the computational indistinguishability, we
see that for every A valid for π there is a S ′ valid for ρ such that EXECπ,A,Z and
EXECρ,S′,Z are computationally indistinguishable for all a priori polynomial-time Z.
Thus π emulates ρ. �

On generalizations of transitivity. Successive application of Lemma 13 yields for
any constant n that π1 emulates πn whenever πi emulates πi+1 for all 1 ≤ i < n. We

24Unless, of course, the non-reflexivity is only due to syntactical reasons, e.g., if the ideal protocol is
formally required to consist of a functionality.
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cannot hope for more (e.g., if n is polynomial in the security parameter k). Namely,
consider an infinite sequence π1, π2, . . . of protocols such that πi emulates πi+1 for all
i. Let p(k) be any function with limk→∞ p(k) = ∞. In this situation, one might hope
that π1 emulates πp(k), where πp(k) is the protocol that behaves like πp(i) when invoked
with security parameter k = i. (Such a form of transitivity would be extremely useful,
e.g., to avoid“full-fledged hybrid arguments,” and instead focus on two individual hybrid
systems.) However, this “generalized transitivity”does not hold in general. For instance,
say that πi outputs 1 on security parameter p(k) = i, and 0 otherwise. Note that this
implies that πi emulates πi+1 for any fixed i. However, π1 outputs 0 almost always, and
πp(k) outputs 1 always.

Note that this impossibility is not a property specific to our definition, the example
given here works with essentially any security notion unless it uses concrete security
bounds.

One-bit output without loss of generality. Finally, the following lemma states
that without loss of generality we can consider only environments that give a single bit of
output. While this property is not necessary for a useful security definition (and indeed,
some UC-like security notions do not fulfill it, e.g., specialized-simulator UC [Lin03]),
it can sometimes be convenient to assume that the output consists of a single bit, and
some authors even define the UC notion with respect to one-bit output.

Definition 14 (Emulation with respect to one-bit output) We say that π emu-
lates φ with respect to one-bit output, if Definition 11 applies when quantifying only over
environments Z that give a single bit of output.

Lemma 15 π emulates φ with respect to one-bit output if and only if π emulates φ.

Proof. By definition, UC implies UC with respect to one-bit output. So we only have
to show the opposite direction. Assume that π does not emulate φ. Then (using the
definition of computational indistinguishability), there is a valid adversary A for π such
that for every valid simulator for φ, there exists an a priori polynomial-time environment
Z, a nonuniform probabilistic polynomial-time algorithm D and a sequence zk ∈ {0, 1}∗,
such that

∣∣Pr[D(1k, zk,EXECπ,A,Z(k, zk)) = 1]−Pr[D(1k, zk,EXECφ,S,Z(k, zk)) = 1]
∣∣ is

not negligible. Let for the moment A and S be fixed. For the nonuniform probabilistic
polynomial-time algorithm D, there is a uniform probabilistic polynomial-time algo-
rithm D̂ and a sequence dk of strings of polynomial length such that D̂(1k, dk, zk, x) =
D(1k, zk, x). Let Ẑ be the environment that upon security parameter 1k and auxiliary
input (dk, zk) simulates Z with auxiliary input zk. When Z would give output x, then
Ẑ gives output D(1k, dk, zk, x).

Let ẑk := (dk, zk). Then Pr[EXECπ,A,Ẑ(k, ẑk) = 1] = Pr[D(1k, zk,EXECπ,A,Z(k, zk)) =

1] and Pr[EXECφ,S,Ẑ(k, ẑk) = 1] = Pr[D(1k, zk,EXECφ,S,Z(k, zk)) = 1]. Thus, we get

that
∣∣Pr[EXECπ,A,Ẑ(k, ẑk) = 1] − Pr[EXECφ,S,Ẑ(k, ẑk) = 1]

∣∣ is not negligible. Summa-
rizing, we have that there is a valid adversary A such that for any valid simulator S there
exists an a priori polynomial-time environment Ẑ such that EXECπ,A,Ẑ and EXECφ,S,Ẑ
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are not computationally indistinguishable. Thus π does not emulate φ with respect to
one-bit output. �

6 Dummy Adversary

A very useful tool for dealing with a UC-like definition is the concept of the dummy
adversary.

Definition 16 (Dummy Adversary) The dummy adversary is the following machine.
Whenever it receives a message from the protocol (this may include control messages like
the responses to corruption requests), it forwards that message to the environment (in-
cluding the id of the sender of the message). When it receives a message from the
environment to send a given message to a given recipient (which may be a normal mes-
sage, or a control message like a corruption request), the dummy adversary sends that
message to the required recipient.

The usefulness of the dummy adversary stems from the fact that for many variants of
the UC definition (including ours, see below) one can without loss of generality consider
only the dummy adversary (we say, the dummy adversary is complete). This has several
advantages. First, security proofs can be formulated much simpler, since we can assume
a single given adversary and construct a simulator for that given adversary (instead of
formulating a generic transformation from adversaries to simulators). Second, even with
classical UC definitions, the proof of the universal composition theorem uses the dummy
adversary (at least if we allow polynomially many instances of the subprotocol). And
third, some authors find it more intuitive to define security directly with respect to the
dummy adversary.

Furthermore, in our situation, the dummy adversary has additional advantages. First,
even the proof of the simplest case of the composition theorem (where only a single
instance of the subprotocol may be invoked) heavily depends on the completeness of the
dummy adversary. Second, the security definition as formulated in Definition 11 may
be hard to handle, since it requires us to prove the existence of a valid simulator for
every valid adversary. Since the definition of validity depends on the protocols under
consideration, it may be very difficult to find a simple characterisation of the set of all
adversaries. However, when using the dummy adversary, such a characterisation is not
necessary, and it is sufficient to construct a concrete valid simulator for this concrete
and simple adversary.

However, despite the seeming simplicity of the concept of the dummy adversary,
some care has to be taken. In the classical UC notion, the adversary is required to be a
priori polynomial-time. Since the dummy adversary does not have any a priori bound
on the length or number of messages it delivers for the environment, it is not a priori
polynomial-time. So in the classical UC notion one instead has to consider a family
of dummy-adversaries that are parametrized over the maximum number and length of
messages they can transmit. This introduces additional complexity into proofs using the
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dummy adversary. Fortunately, it turns out that for our UC variant such a family of
dummy-adversaries is not necessary since for every reactively polynomial-time protocol,
the dummy adversary is valid.

Lemma 17 (Validity of the dummy adversary) If π is a reactively polynomial-time
protocol, the dummy adversary is valid for π.

Proof. Assume that the dummy adversary Ã was not valid. Then there is an a priori
polynomial-time ITM Z such that π∪{Ã,Z} is not polynomial-time with overwhelming
probability. Since Ã only forwards messages between Z and π, we can construct an a
priori polynomial-time ITM Z ′ that directly sends and receives those messages to and
from π. Then Z ′ ∪ {π} is not polynomial-time with overwhelming probability. This
is a contradiction to the fact that Z ′ is a priori polynomial-time and π is reactively
polynomial-time.25 �

Of course, the validity of the dummy adversary does not yet ensure its usefulness.
Instead, we need to be able to consider without loss of generality only the dummy
adversary. This is guaranteed by the following theorem.

Definition 18 (Emulation with respect to the dummy adversary) We say π em-
ulates φ with respect to the dummy adversary if there is an ITM S̃ that is valid for φ such
that for every a priori polynomial-time ITM Z the ensembles EXECπ,Ã,Z and EXECφ,S̃,Z

are computationally indistinguishable. Here Ã denotes the dummy adversary.

Theorem 19 (Completeness of the dummy adversary) Assume that π is reactively
polynomial-time. Then π emulates φ if and only if π emulates φ with respect to the
dummy adversary.

Proof. Assume that π emulates φ. Since the dummy adversary Ã is valid for π by
Lemma 17, it directly follows that π emulates φ with respect to the dummy adversary.

Assume now that π emulates φ with respect to the dummy adversary Ã. Let S̃ be
the corresponding simulator, i.e., S̃ is valid for φ and the ensembles EXECπ,Ã,Z and
EXECφ,S̃,Z are computationally indistinguishable for any a priori polynomial-time Z.

To show that π emulates φ we have to show that for any valid adversary A, there
is a valid simulator S such that the ensembles EXECπ,A,Z and EXECφ,S,Z are compu-
tationally indistinguishable for any a priori polynomial-time Z. Let therefore A be an
adversary that is valid for π, and let Z be an a priori polynomial-time environment.
We will construct a valid simulator for φ that depends only on A (and not on Z). The
network consisting of π, Z and that adversary A is depicted in Figure 2 (a).

Since A is valid and Z is a priori polynomial-time, the network π ∪ {A,Z} is
polynomial-time with overwhelming probability. In other words, there is a polynomial p
such that TIMEπ,A,Z(k, z) ≤ p(k) with overwhelming probability for all z ∈ {0, 1}∗ and
k ∈ N.

25We stress that that by Definition 10, Z ′ may impersonate the adversary when running with π.
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Figure 2: Networks in the proof of the completeness of the dummy adversary. The
hatched background of machine A in (c) and (d) denotes an enforced runtime bound of
p(k).

We now construct the environment Z ′ which is supposed to run with the dummy ad-
versary Ã. The environment Z ′ simulates the original environment Z and the adversary
A. Whenever A sends a message to the protocol π, the environment Z ′ instead instructs
the dummy adversary Ã to send that message. Conversely, whenever the dummy adver-
sary Ã informs the environment Z ′ of an incoming message, that message is passed to
the simulated adversary A.

Obviously, the resulting network (cf. Figure 2 (b)) is a faithful simulation of the
original network, in other words, EXECπ,A,Z = EXECπ,Ã,Z′ .

Now we modify Z ′ as follows, resulting in a new environment Z ′
p: When the running

time of the simulated A exceeds p(k), then Z ′
p terminates with a special output beep (we

assume that Z never outputs beep). Since TIMEπ,A,Z(k, z) > p(k) only with negligible
probability, the modified environment Z ′ terminates with output beep only with negli-
gible probability (when running with π and Ã, cf. Figure 2 (c)). Therefore EXECπ,Ã,Z′

and EXECπ,Ã,Z′
p
are computationally indistinguishable (in fact even statistically indis-

tinguishable). Note further that since Z is a priori polynomial-time, and the simulated
A runs at most p(k) steps, the environment Z ′

p is a priori polynomial-time, too.
Thus, since π emulates φ with respect to the dummy adversary, EXECπ,Ã,Z′

p
and

EXECφ,S̃,Z′
p
(cf. Figure 2 (d)) are computationally indistinguishable.

Since EXECπ,Ã,Z′
p
= beep only with negligible probability, EXECφ,S̃,Z′

p
= beep

holds only with negligible probability. Therefore we can replace Z ′
p by Z ′, and thus

EXECφ,S̃,Z′
p
and EXECφ,S̃,Z′ (cf. Figure 2 (e)) are computationally indistinguishable.

By constructing a simulator S that simulates both A and S̃, we get the situation
depicted in Figure 2 (f). Since this is essentially just a regrouping of machines, we have
EXECφ,S̃,Z′ = EXECφ,S,Z .

Summarising our results so far, we have that EXECπ,A,Z and EXECφ,S,Z are compu-
tationally indistinguishable. Note that this holds for any Z, and that the construction
of S does not depend on Z.

It is left to show that S is valid for φ. Since S̃ is valid for φ, the network φ∪{Z ′
p, S̃}

is polynomial-time with overwhelming probability (Figure 2 (d)). Since the network
φ ∪ {Z ′

p, S̃} behaves differently from φ ∪ {Z ′, S̃} (Figure 2 (e)) only if Z ′
p output beep

which happens with negligible probability, the network φ ∪ {Z ′, S̃} is polynomial-time
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with overwhelming probability, too. Then also φ ∪ {S,Z} (Figure 2 (f)) is polynomial-
time with overwhelming probability. Since this holds for any a priori polynomial-time Z,
it follows that φ ∪ {S} is reactively polynomial-time, and therefore S is valid for φ. �

7 Universal Composition Theorem

Arguably the most salient property of the UC security definition (and other security
definitions of the same kind like RSIM [PW01, BPW04b]) is the so-called composition
theorem. The composition theorem guarantees that we can securely replace an ideal
functionality with its implementation. More formally, the composition theorem states
that whenever π emulates φ, then ρπ emulates ρφ. The composition theorem is a well-
known result for classical UC notions and comes in two flavors. One flavor allows ρ to
invoke an arbitrary number of instances of the subprotocol π or φ, respectively (uni-
versal composition theorem), while the other, more restricted flavor requires ρ to invoke
only a single instance of the subprotocol (called the simple composition theorem in the
following). It is known that for some variants of the UC notion only the simple composi-
tion theorem holds [HU06]. For UC with respect to reactive polynomial time, however,
the universal composition theorem holds (see below) of which the simple composition
theorem is a direct consequence. Nevertheless, since the proof of the universal compo-
sition theorem is quite involved, here we start with the conceptually simpler theorem
for simple composition. We believe that reading the proof for this simple composition
theorem first will help the reader to familiarize himself with the setting and our model
before attempting to go through the more involved proof of the universal composition
theorem.

Theorem 20 (Simple Composition Theorem) Let π, φ and ρ be protocols. Assume
that π emulates φ. Assume that ρ calls only one subprotocol instance. Assume further
that π and ρπ are reactively polynomial-time. Then ρπ emulates ρφ.

On the assumptions in the composition theorem(s). We remark that there
is an interesting asymmetry in the preconditions in Theorem 20 (and in the universal
composition theorem, Theorem 21, below). Namely, it is required that π and ρπ are
reactively polynomial-time, while φ and ρφ need not be. Although probably protocols
which are not reactively polynomial-time will not be used in applications of the composi-
tion theorem, the absence of additional proof obligations may make proofs that use the
composition theorem simpler.

We stress that our security notion is not subject to the counterexample of [Can05a,
pp. 65–66]. This counterexample exhibits a Canetti-PPT-protocol π that realizes an
ideal functionality F that is not Canetti-PPT. The example then goes on to show that
already two instances of π (in concurrency) do no longer realize two instances of F . In
our setting, however, π would not realize F in the first place. Namely, recall that we
require the existence of a simulator S such that the ideal system φ ∪ {S} is reactively
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polynomial-time. (I.e., it is the responsibility of the simulator to make φ polynomial-
time.) However, in case of the example from [Can05a], the system F ∪ {S} is not
reactively polynomial-time for any simulator S.

On the assumption that ρπ is reactively polynomial-time. An important point
is the fact that we have to show that the composed protocol ρπ is reactively polynomial-
time before we can show that it is secure. This is an extra assumption compared, e.g., to
the composition theorem of [Can05a]. In their setting, ρπ is automatically polynomial-
time as soon as ρ and π are. In our setting, this may not be the case (so in a certain sense,
the definition of reactive polynomial time itself does not compose). However, we stress
that in most practical situations, it is very easy to show that the composed protocol
is reactively polynomial-time, while the security is the interesting property. We believe
that this additional proof obligation is a necessary result of the high generality of our
approach. In particular, one can easily derive a version of this composition theorem
that does not have this condition: When restricting the protocols to some subclass
of reactively polynomial-time protocols that is closed under composition (e.g., those
studied in [DKMR05, Can05a]) one automatically gets a composition theorem without
this condition as a corollary of Theorem 20 (and a universal composition theorem without
this condition as corollary of Theorem 21).

Alternatively, the follow-up work [HS11] gives a “dual” version of our composition
theorems Theorem 20 and Theorem 21. Namely, the (universal) composition theorem in
[HS11] assumes that the ideal composed protocol ρφ (and not the real composed protocol
ρπ) is polynomial-time. The composition theorem in [HS11] proceeds to show that then,
the composed real protocol ρπ is polynomial-time as well. This dual version of the
composition theorem can be easier to work with in situations in which protocol design
starts with an ideal protocol, which is then refined and implemented in several steps.
The price to pay for this “dual version” of Theorem 20 and Theorem 21 in [HS11] is a
modified notion of polynomial runtime, which needs to explicitly consider and restrict
the volume of the message flows between machines.

Functionalities with code upload. In some situations, it is convenient to model
a functionality that accepts a fragment of code from the adversary or simulator and
executes that code. For example, consider a signature functionality F . This functionality,
given a message m from a user, returns a corresponding signature σ. Since the signature
functionality should not depend on the signature scheme that is used to implement the
functionality, the functionality does not know what a valid signature σ should look like.
Thus, m is typically sent to the simulator which provides a corresponding signature σ.
The drawback with this solution is that the simulator learns all messages that are signed,
even if both the message and the corresponding signature are never sent over the network.
This can be avoided by modeling F as follows: In the beginning of the execution, the
simulator sends a program P to the functionality. When the functionality has to sign m,
it simply produces the signature as σ := P (m). (This approach was suggested, e.g., in
[Can05a].)

The problem with this approach is that such a functionality F with code upload is
not polynomial-time (not even reactively polynomial-time): Since F does not impose any
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runtime bound on P , the execution can take arbitrary long. (Notice also that fixing a
polynomial runtime bound is non-trivial because F cannot know which is the polynomial
that should be used.)

In our setting, however, it turns out that functionalities with code upload can be
modeled and used. For example, in the case of the signature functionality F , we can
specify a protocol π that emulates F using a fixed signature scheme S (π just signs all
messages locally). Notice that π is reactively polynomial-time because it does not use an
adversary-provided algorithm for signing. F however is not reactively polynomial-time
(but, together with the concrete simulator that we use to simulate ρ, it becomes reactively
polynomial-time because that simulator uploads the signature scheme S). Now, assume
a protocol σ that uses the signature functionality F to implement some functionality G.
(Here G describes the final goal of our protocol construction.) At the first glance, it may
seem as though showing that σF emulates G will be impossible: σF contains F which is
not reactively polynomial-time, and hence we might expect σF to run a superpolynomial
number of steps which means that we cannot rely on any computational assumptions in
the analysis of σF . This argument, however, is fallacious. Indeed, in the definition of
UC emulation (Definition 11) we quantify only over valid adversaries. Hence we have
the guarantee that σF will never make more than a polynomial number of steps. Thus,
we can use computational assumptions.

We have that π emulates F . Furthermore, σπ and π will be reactively polynomial-
time (if constructed sensibly) since they do not contain F . We can therefore apply the
composition theorem to get that σπ emulates σF . Together with the fact that σF emu-
lates G26 and the transitivity of UC emulation (Lemma 13), it follows that σπ emulates
G. We have thus successfully used a functionality with code upload in the analysis of
σπ, and never needed the fact that that functionality was reactively polynomial-time.

The reason why functionalities with code upload can be handled in our setting is that
in the definition of UC emulation, we consider only valid adversaries and simulators, i.e.,
adversaries and simulators that make sure that the real/ideal protocol runs in polynomial-
time. This puts the burden of ensuring the correct runtime on the adversary/simulator.
Hence a functionality that executes code sent from the adversary/simulator is permitted
because the adversary/simulator will not be allowed to send code that runs too long
(otherwise the adversary/simulator would not be valid).

Proof of the simple composition theorem. We now finally state the proof of the
simple composition theorem:
Proof of Theorem 20. Let A be the dummy adversary. Since π is reactively polynomial-
time, A is a valid adversary for π. Therefore there exists a simulator S that is valid for
φ such that EXECπ,A,Z and EXECφ,S,Z are computationally indistinguishable.

26Depending on the particular situation, proving that σF emulates G may be more or less complicated.
The fact that F is not reactively polynomial-time does not exclude the use of complexity assumptions in
the proof because a valid adversary will make F run in polynomial time. But we are restricted in what
structural properties of UC we can use when proving that σF emulates G: both the composition theorem
(Theorem 21) and the completeness of the dummy adversary (Theorem 19) do not apply and cannot be
used in this subproof. Whether or not these difficulties outweigh the advantages of code upload probably
depends on the particular use case.
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Figure 3: Networks appearing in the proof of the simple composition theorem

To show the composition theorem, by Theorem 19 it is sufficient to show that S is
valid for ρπ and that for any a priori polynomial-time environment Z

EXECρπ ,A,Z and EXECρφ,S,Z (5)

are computationally indistinguishable. These networks are depicted in Figures 3 (a)
and (d).

Let therefore Z be an arbitrary a priori polynomial-time environment.
In the classical UC definitions, the proof would now continue by replacing Z and ρ

by a machine Z ′ simulating these machines (Figure 3 (b)). Then Z ′ could be considered
as an environment for π, and A would be an adversary for π. Since π emulates φ we
could then replace π and A by φ and S (Figure 3 (c)) and finally replace Z ′ by Z and ρ
(Figure 3 (d)). However, in our setting we have to be more careful. First, an adversary
that is valid for ρπ is not necessarily valid for π. Second, the resulting environment Z ′

is not necessarily a priori polynomial-time. And third, we further have to show that the
simulator S is valid for ρπ and not only for π.

The first point can be easily handled since we assumed A to be the dummy adversary.
In this case, A is also valid for π so the problem does not occur. Note however that if
A was an arbitrary adversary, this would not hold. Therefore the completeness of the
dummy adversary is essential for our proof.

The second point can be solved by first replacing ρ by an a priori polynomial-time
protocol with a sufficiently large polynomial runtime bound p and only then constructing
an a priori polynomial-time environment Z ′ that simulates Z and the modified ρ. This
will be shown in more detail in the following.

The third point is handled at the end of this proof, see below.
Since ρπ is reactively polynomial-time, so is ρπ ∪ {A} (by Lemma 17). Hence for

any a priori polynomial-time environment Z the network ρπ ∪ {A,Z} is polynomial-
time with overwhelming probability. In other words, there is a polynomial p such that
TIMEρπ ,A,Z(k, z) ≤ p(k) with overwhelming probability for all z ∈ {0, 1}∗ and k ∈ N.

We now construct the environment Z ′ as follows: Z ′ simulates the environment Z and
all machines in ρ. However, when the total running time of all machines in ρ exceeds p(k),
then Z ′ terminates with a special output beep (we assume that Z never outputs beep).
Since TIMEρπ ,A,Z(k, z) > p(k) only with negligible probability, the running time of ρ will
exceed p(k) only with negligible probability. Thus Z ′ terminates with output beep only
with negligible probability (when running with π and A, cf. Figure 3 (b)) and performs
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a faithful simulation of Z and ρ otherwise. Therefore EXECρπ ,A,Z and EXECπ,A,Z′ are
computationally indistinguishable (in fact even statistically indistinguishable).

Since Z is a priori polynomial-time, and since Z ′ enforces a polynomial runtime
bound for the simulated machines in ρ, the resulting environmentZ ′ is a priori polynomial-
time, too.

Therefore by definition of S, the simulator S is valid for φ, and the ensembles
EXECπ,A,Z′ and EXECφ,S,Z′ are computationally indistinguishable. (Cf. Figures 3 (b)
and (c).)

Since in an execution EXECπ,A,Z′ the output beep occurs only with negligible prob-
ability, the probability of output beep is also negligible for the computationally indistin-
guishable EXECφ,S,Z′ . Since Z ′ faithfully simulates Z and ρ unless it gives output beep,
we can again replace Z ′ by Z and ρ, resulting in the network ρπ∪{S,Z} (cf. Figure 3 (d)).
Thus the ensembles EXECφ,S,Z′ and EXECρφ,S,Z are computationally indistinguishable
(in fact even statistically indistinguishable).

Summarising, we have

EXECρπ ,A,Z ≈ EXECπ,A,Z′ ≈ EXECφ,S,Z′ ≈ EXECρφ,S,Z

where ≈ denotes computational indistinguishability. Thus EXECρπ ,A,Z and EXECρφ,S,Z

are computationally indistinguishable and (5) is shown.
It is left to show that S is valid for ρφ. Since S is by construction valid for φ, and

since Z ′ is a priori polynomial-time, we have that φ ∪ {S,Z ′} is polynomial-time with
overwhelming probability.

As seen above, the output EXECφ,S,Z′ is beep only with negligible probability, and Z ′

faithfully simulates ρ and Z otherwise. Therefore, since the running time of φ∪ {S,Z ′}
is polynomial-time with overwhelming probability, so is that of the network ρφ ∪ {S,Z}
which results from replacing Z ′ by ρ and Z.

Since this holds for every a priori polynomial-time Z, it follows that ρφ ∪ {S} is
reactively polynomial-time, so the simulator S is valid for ρφ. �

We now state our main result in this section, the universal composition theorem:

Theorem 21 (Universal Composition Theorem) Let π, φ and ρ be protocols, such
that π and ρπ are reactively polynomial-time. The protocol ρ may call an arbitrary
number of subprotocol instances. Assume that π emulates φ. Then ρπ emulates ρφ.

Proof sketch (of Theorem 21). Recall the original proof of the universal composi-
tion theorem reproduced in Section 2.1. In that proof, we have constructed a simulator
S∞ for ρφ from a simulator S for φ. Concretely, S∞ was essentially a combination of
many instances of S. It is easy to see that S∞ is a priori polynomial-time whenever
S is. However, we do not know that S∞ is reactively polynomial-time (when combined
with the ideal protocol) whenever S is. (Recall that the combination of several reactively
polynomial-time machines may not be reactively polynomial.)

Hence, we cannot apply the original reasoning of the universal composition theorem
because we do not know if the constructed simulator S∞ satisfies our polynomial-time
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notion. Furthermore, the hybrid networks Hl from the analysis in Section 2.1 may or
may not satisfy any polynomial runtime bounds (which is a prerequisite for applying
the theorem assumption that π emulates φ). For example, it is possible to construct
protocols π and φ such that k copies of π running concurrently as well as k copies of φ
are reactively polynomial-time, but k

2 copies of π with k
2 copies of φ run in exponential

time, even though they cannot communicate directly.27 So even when we require both ρπ

and ρφ to be reactively polynomial-time, the hybrid network Hp/2 might not be.
We approach these issues by inductively proving that the networks Hj (j = 1, . . . , p)

are reactively polynomial-time. Of course, since we apply an inductive step a polynomial
number of times, we have to keep track of the concrete complexities and probabilities
carefully. To prevent these concrete bounds from growing too quickly, we use the follow-
ing approach.

Recall that the hybrid environment Z̃∗
l from the proof sketch of Theorem 6 mapped

subprotocol invocations directly to instances of π, resp. φ (with the corresponding ad-
versaries). Concretely, the first l − 1 subprotocol instances are mapped to φ-instances,
the l-th subprotocol instance is the challenge instance, and the remaining subprotocol in-
stances are mapped to π-instances. (See also Figure 1(c).) For our purposes, we modify
the Z̃∗

l into an environment Z∗
l as follows: Instead of directly mapping the subprotocol

sessions invoked by ρ to instances of the real, resp. ideal protocol, our hybrid environment
Z∗
l applies a random permutation to the instance indices 1, . . . , l. (In other words, Z∗

l

proceeds like Z̃∗
l , but randomly shuffles the subprotocol indices.) Assume that for some i

we already know that Z∗
i with π runs in polynomial time with some overwhelming prob-

ability 1 − ti−1 (where ti−1 is some negligible function that will be inductively derived
below). If we replace π by φ, by assumption the environment Z∗

i cannot distinguish the
two cases, so in particular, we know that all i − 1 internal instances of φ simulated by
Z∗
i still run in polynomial time with probability 1 − ti−1 (up to a negligible error h).

Now consider the probability ti that one of the i internal or external instances of φ runs
in superpolynomial time. Since the instances 1, . . . , i of φ are randomly permuted, the
instances of φ cannot “know”which of them is the external instance, so with probability
i−1
i ti one of the internal instances will run in superpolynomial time, thus ti ≤

i
i−1 ti−1.

Since
∏

i
i

i−1 is polynomially bounded even for a polynomial number of factors, the prob-
abilities ti that the hybrid networks Hi run in superpolynomial time will stay negligible.
This proves that all hybrid networks Hl are reactively polynomial-time.

Note that in this argument, to derive the runtime bounds of the hybrid networks Hl,
we needed that two consecutiveHl are indistinguishable; and to show that indistinguisha-
bility, we need the polynomial runtime bound. Fortunately, for the indistinguishability
of Hl and Hl+1, we need runtime bounds on Hl but not on Hl+1. Hence, we can de-

27As a rough sketch, assume that there are two puzzles A and B of variable hardness. When Z solves
a puzzle of type A of hardness s for π, then π solves a puzzle of type B of hardness 2s for Z. Similarly
when Z solves puzzles of type B for φ of hardness s, then φ solves puzzles of type A and hardness 2s
for Z. Both π and φ are reactively polynomial-time, even when executed polynomially many times. But
when Z relays the messages between k instances of π and φ, these instances will solve puzzles up to a
hardness 2k. Of course, these protocols can be easily distinguished by Z; hence this particular example
does not invalidate the proof of the composition theorem.
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rive both the indistinguishability and the runtime bounds in one simultaneous induction.
Of course, in the full proof we additionally have to keep track of the concrete runtime
polynomials, and we have to ensure that the negligible error h is independent of i.

We remark that in the full proof, the hybrid network Hl is not constructed explicitly;
instead, we directly analyze the networks π ∪ {A,Z∗

l } and φ∪ {S,Z∗
l−1} which simulate

the machines in Hl.

The full proof. The rest of this section will be devoted to the proof of Theorem 21.
In this, as usual, k ∈ N will always denote the security parameter, and A will always
denote the dummy adversary. Furthermore, S will always denote a simulator such that
φ∪{S} is reactively polynomial-time, and for every a priori polynomial-time Z, we have

EXECπ,A,Z ≈ EXECφ,S,Z (6)

The existence of such a good simulator28 for φ and A follows from the fact that with π,
also π ∪ {A} is reactively polynomial-time (Lemma 17), and hence our security assump-
tion that π emulates φ implies the existence of such an S.

In analogy to existing composability proofs, a good simulator S∞ for ρφ and A can
be obtained by simply running many copies of the simulator S concurrently, one for each
session of φ. The main difficulty in proving that S∞ is good is to show that the network
ρφ ∪ {S∞} is reactively polynomial-time. This is also the main difference to existing
proofs for (universal) composition theorems.

We start by defining a hybrid environment for our hybrid argument. This hybrid
argument is, due to the absence of a priori and uniform runtime bounds, considerably
more complicated than existing hybrid arguments for composition theorems in classical
models (such as [Can01, Can05a]).

Definition 22 (Hybrid environment Z∗
l,p) Let π, φ, and ρ protocols, such that π and

ρπ are reactively polynomial-time. Let A be the dummy adversary and S be a simulator
that is valid for φ such that EXECπ,A,Z ≈ EXECφ,S,Z for all a priori polynomial-time Z.
Let Z be an a priori polynomial-time environment.

Let furthermore p = p(k) be a polynomial and l ∈ N ∪ {∞}.
Then the environment Z∗

l,p (to be run either with π or with φ) proceeds as follows:

1. Uniformly pick a random permutation Π on {1, . . . , p(k)}. Define Π(i) := i for
i > p(k).

2. Start a simulation of Z with protocol ρ and adversary A. Note that ρ and A
may invoke and communicate with subprotocol instances of π or φ. Denote the
session-id of the i-th invoked instance by sid i.

3. Calls to the i-th instance of π are answered as follows:

(a) if Π(i) < l, then relay to a simulation of protocol φ with simulator S,

28By good simulator S for φ and A we mean here and in the following that φ ∪ {S} is reactively
polynomial-time and that EXECπ,A,Z ≈ EXECφ,S,Z for every a priori polynomial-time Z
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Figure 4: The hybrid environment Z∗
l,p internally simulates environment Z with dummy

adversary A and protocol ρ. The subroutine calls of ρ (and A) are translated as follows:
l− 1 subsessions are simulated inside Z∗

l,p as ideal instances of φ with simulator S. The
subsession with session-id sidout = sidΠ−1(l) is relayed outside of Z∗

l,p, i.e., to the adver-
sary and protocol Z∗

l,p itself is running with. The remaining subsessions are simulated
in Z∗

l,p as real instances of π together with the dummy adversary. Which subsessions are
relayed where is governed by the permutation Π.

(b) if Π(i) = l, then relay to outside of Z∗
l,p, i.e., to the protocol and adversary

that Z∗
l,p runs with,

(c) if Π(i) > l, then relay to a simulation of protocol π with dummy adversary.

During this, the session-id sid i is removed from and added to the messages as
necessary for interfacing to and from ρ and A.

4. When Z terminates, terminate with the same output as Z.

It will be useful to abbreviate out := Π−1(l), i.e., out is the index such that messages for
session sidout are relayed to the outside of Z∗

l,p.

Definition 23 (Hybrid environments Z∗
R,p, [Z

∗
l,p]q, [Z

∗
R,p]q) In the situation of the above

Definition 22, and for a polynomial q = q(k), define environments Z∗
R,p, [Z∗

l,p]q, and
[Z∗

R,p]q just like Z∗
l,p, only with the following exceptions:

• Z∗
R,p initially uniformly chooses l ∈ {1, . . . , p(k)} on its own,

• [Z∗
l,p]q terminates with output (timeout , l) as soon as one of the following holds:

– the internally simulated protocol ρ runs more than p(k) steps, or

– the internally simulated protocol ρ or the simulation of Z invokes more than
p(k) subprotocol sessions,29 or

– one internally simulated subprotocol session (where we count steps of the re-
spective instances of S, π, and φ, but not those of A) runs more than q(k)
steps.

29Z may invoke subprotocol sessions through the dummy adversary.
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Without losing on generality, we assume that Z never outputs (timeout , ∗) on its
own (this can be enforced, e.g., by a different encoding of Z’s own output). Hence,
from a (timeout , l) output of [Z∗

l,p]q, we can deduce that one of the preceding con-
ditions is fulfilled.

• [Z∗
R,p]q is defined as [Z∗

l,p]q, but initially uniformly chooses l ∈ {1, . . . , p(k)} on its
own.

Note that the environments [Z∗
l,p]q and [Z∗

R,p]q stop execution as soon as one of the
internally simulated non-A machines run more than a polynomial number of steps (or if
more than polynomially many of those internal simulations are started). By construction
of the dummy adversary A, this makes [Z∗

l,p]q and [Z∗
R,p]q a priori polynomial-time,

whereas Z∗
l,p and Z∗

R,p might not be.
The next definition will be useful in the analysis of the environments defined above.

It defines events that are fulfilled when certain complexity bounds are surpassed.

Definition 24 (Events Bi
q, B

ρ
p , Bp,q, B

6=i
p,q) Assume a network of the form ρπ ∪ {A,Z}.

For i ∈ N, denote by Bi
q the event that the machines associated with the i-th session-

id sid i of π run more than q(k) overall steps. Denote by Bρ
p the event that either the

machines from protocol ρ (not counting machines from π) run more than p(k) overall
steps, or that ρ and Z have invoked in total more than p(k) sessions of π.

Furthermore, let

Bp,q := Bρ
p ∨

∨

i∈N

Bi
q

B 6=i
p,q := Bρ

p ∨
∨

i′ 6=i

Bi′

q .

For networks of the form π ∪ {A,Z∗} with Z∗ = Z∗
l,p or one of its variants, define

Bi
q, B

ρ
p , Bp,q, and B 6=i

p,q analogously. As usual, the machines associated with session-id
sid i include a possible copy of S, but not a possible copy of A.30

We write “Bi
q in N” etc. to emphasize the specific network N in which the event is

considered (e.g., “Bρ
p in π ∪ {A,Z∗

R,p}”).

Note that we have defined B 6=out
p,q such that [Z∗

l,p]q gives output (timeout , l) if and

only if the event B 6=out
p,q occurs.

The following simple observations will prove substantial for the later arguments.

30This asymmetry is to ensure that we can compare“timeout events” in systems of the form ρπ∪{A,Z}
and π ∪ {A, [Z∗]} where the dummy adversary relays a different set of connections. Intuitively, this is
justified by the fact that the dummy adversary can be considered just as being a set of connections and
not participating actively in the computation.
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Lemma 25 In the situation of Definition 22, for arbitrary p, and l ∈ N, the network
equivalences

φ ∪ {S,Z∗
l,p} = π ∪ {A,Z∗

l+1,p} (7)

ρπ ∪ {A,Z} = π ∪ {A,Z∗
1,p} (8)

ρφ ∪ {S,Z} = φ ∪ {S,Z∗
∞,p} = π ∪ {A,Z∗

∞,p} (9)

hold in the following sense. For each equivalence, the common distribution of the view
of all machines (simulated and non-simulated, but excluding instances of the dummy
adversary A)31 on the left-hand-side is identical to common distribution of the view of
all machines on the right-hand-side.

Here we do not count the view of Z∗
l,p itself, but only the common view all of its

submachines, except for A-instances.

Proof. For Equation 7, this is clear since in both networks, precisely l ideal protocol
instances are present, in both cases with the session-ids (sidΠ−1(1), . . . , sidΠ−1(l)).

Similarly, in the networks from Equation 8, only real instances are run, and in
Equation 9, only ideal instances are run. (Note that Z∗

∞,p’s execution does not depend
on the network it runs in, since Z∗

∞,p never activates the network it runs with.) �

The following lemma will not only act as a “base case” in the upcoming inductive
argument. It will also be useful to derive the existence of some concrete complexity
bounds.

Lemma 26 In the situation of Definition 22, there exist polynomials p = p(k) and
q = q(k), and a negligible function µ = µ(k) such that for all k ∈ N and all auxiliary
inputs z ∈ {0, 1}∗ for Z, the following holds. We have that Pr[Bp,q] ≤ µ(k), both in
π ∪ {A,Z∗

1,p} and in φ ∪ {S,Z∗
1,p}.

Proof. By assumption, ρπ is reactively polynomial-time. So by Lemma 17, also the
network ρπ ∪ {A} is reactively polynomial-time. Since the original environment Z is a
priori polynomial-time, ρπ ∪ {A,Z} is polynomial-time with overwhelming probability.
Hence, there is a polynomial p = p(k) and a negligible function µ1 = µ1(k), such that

Pr[Bp,p in π∪{A,Z∗
1,p}]

(8)
= Pr[Bp,p in ρπ∪{A,Z}] ≤ Pr[TIMEρπ ,A,Z > p(k)] ≤ µ1(k).

(10)
As discussed above, by construction, [Z∗

1,p]p is a priori polynomially bounded and

outputs (timeout , 1) iff B 6=out
p,p occurs. Since S is a good simulator for φ, this implies

Pr[B 6=out

p,p in φ ∪ {S,Z∗
1,p}]

(∗)
= Pr[B 6=out

p,p in φ ∪ {S, [Z∗
1,p]p}]

(∗∗)

≤ Pr[B 6=out

p,p in π ∪ {A, [Z∗
1,p]p}] + µ2(k)

(∗)
= Pr[B 6=out

p,p in π ∪ {A,Z∗
1,p}] + µ2(k)

(10)

≤ µ1(k) + µ2(k). (11)

31See footnote 30.
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for some negligible µ2 = µ2(k). Here (∗) uses that [Z∗
1,p]p behaves like Z∗

1,p until B 6=out
p,p

occurs. And (∗∗) uses that B 6=out
p,p can be efficiently computed from the output of [Z∗

1,p]p.
Now, since [Z∗

1,p]p is a priori polynomial-time, φ ∪ {S, [Z∗
1,p]p} is polynomial-time

with overwhelming probability. Hence, there is a polynomial q = q(k) with q > p and a
negligible function µ3 = µ3(k) with

Pr[Bout

q in φ ∪ {S, [Z∗
1,p]p}] ≤ Pr[TIMEφ,S,[Z∗

1,p]p
> q(k)] ≤ µ3(k). (12)

Since [Z∗
1,p]p simulates Z∗

1,p until it outputs (timeout , 1) which in turn happens with
probability at most µ1 + µ2 in an execution with φ and S by (11), an execution of
φ∪{S, [Z∗

1,p]p} and an execution of φ∪{S,Z∗
1,p} differ with probability at most µ1+µ2.

Using (12) it follows that

Pr[Bout

q in φ ∪ {S,Z∗
1,p}] ≤ µ1(k) + µ2(k) + µ3(k). (13)

Let µ := 2µ1+2µ2+µ3. Since q > p, we have Bp,q = Bρ
p ∨

∨
i∈NBi

q ⇒ Bρ
p ∨

∨
i 6=out

Bi
p ∨

Bout
q = B 6=out

p,p ∨Bout
q . So

Pr[Bp,q in φ ∪ {S,Z∗
1,p}] ≤ Pr[B 6=out

p,p ∨Bout

q in φ ∪ {S,Z∗
1,p}]

(11,13)

≤ µ(k). (14)

Finally, since q > p, we have Bp,q = Bρ
p ∨

∨
i∈NBi

q ⇒ Bρ
p ∨

∨
i∈NBi

p = Bp,p and thus get

Pr[Bp,q in π ∪ {A,Z∗
1,p}] ≤ Pr[Bp,p in π ∪ {A,Z∗

1,p}]
(10)

≤ µ1(k) ≤ µ(k). (15)

Equations (15) and (14) show the lemma. �

For the remainder of this section, fix p, q, and µ as given by Lemma 26. For read-
ability, we will drop p and q from the notation of the hybrid environments and events.
That is, we will abbreviate Z∗

i := Z∗
i,p, Z

∗
R := Z∗

R,p, [Z
∗
i ] := [Z∗

i,p]q, and [Z∗
R] := [Z∗

R,p]q.

Also, we will write B := Bp,q, B
i := Bi

q, B
ρ := Bρ

p,q, and B 6=i := B 6=i
q

Lemma 27 In the situation of Definition 22, there exists a negligible function h = h(k)
such that for all k ∈ N, all l ∈ {1, . . . , p(k)}, and all auxiliary inputs z ∈ {0, 1}∗ for Z,
we have ∣∣∣Pr[B 6=out in π ∪ {A,Z∗

l }]− Pr[B 6=out in φ ∪ {S,Z∗
l }]

∣∣∣ ≤ h(k). (16)

Note the universality of h; in particular it does not depend on l.
Proof. By construction, [Z∗

R] is a priori polynomial-time. Therefore, we have the com-
putational indistinguishability EXECπ,A,[Z∗

R
](k, z) ≈ EXECφ,S,[Z∗

R
](k, z). Now let

δl(k) := max
z∈{0,1}∗

∣∣∣Pr[B 6=out in π ∪ {A, [Z∗
l ]}]− Pr[B 6=out in φ ∪ {S, [Z∗

l ]}]
∣∣∣,

and let l∗(k) be an index l∗ ∈ {1, . . . , p(k)} that maximizes δl∗(k).
32

32The maximum is reached because [Z∗
l ] is a priori polynomial-time and hence considers only a finite

prefix of z (the length depending only on the security parameter k). Hence one can assume that there
are only finitely many different z for each k.
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Let D be the non-uniform polynomial-time algorithm that upon input (1k, z,X)
outputs 1 iff X = (timeout , l∗(k)). Since [ZR] chooses a random l ∈ {1, . . . , p(k)} and
then behaves like [Zl], and thus in particular only outputs (timeout , l∗(k)) if l = l∗(k),
we have for all k ∈ N and l ∈ {1, . . . , p(k)} that

h′(k) := max
z∈{0,1}∗

∣∣∣Pr[D(1k, z,EXECπ,A,[Z∗
R
](k, z)) = 1]

− Pr[D(1k, z,EXECφ,S,[Z∗
R
](k, z)) = 1]

∣∣∣

= max
z∈{0,1}∗

1
p(k)

∣∣∣Pr[D(1k, z,EXECπ,A,[Z∗

l∗(k)
](k, z)) = 1]

− Pr[D(1k, z,EXECφ,S,[Z∗

l∗(k)
](k, z)) = 1]

∣∣∣

= max
z∈{0,1}∗

1
p(k)

∣∣∣Pr[B 6=out in π ∪ {A, [Z∗
l∗(k)]}]− Pr[B 6=out in φ ∪ {S, [Z∗

l∗(k)]}]
∣∣∣

= 1
p(k)δl∗(k)(k) ≥

1
pδl(k).

Since EXECπ,A,[Z∗
R
] ≈ EXECφ,S,[Z∗

R
], and D is non-uniform polynomial-time, we have

that h′ is negligible.33 Therefore h(k) := p(k)h′(k) is negligible, too, and δl(k) ≤ h(k)
for all k.

Now observe that for all l, the environment [Z∗
l ] behaves by construction exactly like

Z∗
l unless B 6=out occurs. The lemma follows. �

Lemma 28 In the situation of Definition 22, there exists a negligible function ν such
that for all k ∈ N, all l ∈ N ∪ {∞}, and all z ∈ {0, 1}∗, the following holds. We have
Pr[B] ≤ ν(k), in all of the following networks:

π ∪ {A,Z∗
l }, π ∪ {A,Z∗

R}, π ∪ {A, [Z∗
l ]}, π ∪ {A, [Z∗

R]},

φ ∪ {S,Z∗
l }, φ ∪ {S,Z∗

R}, φ ∪ {S, [Z∗
l ]}, φ ∪ {S, [Z∗

R]}.

Proof. Fix a security parameter k ∈ N and auxiliary input z ∈ {0, 1}∗. For l ∈
{1, . . . , p(k)}, define tl := Pr[B in φ ∪ {S,Z∗

l }]. Our goal will be to give a common
negligible bound on all tl. Now Lemma 26 shows that t1 ≤ µ(k) where µ is negligible.
The bounds on tl for l > 1 will now be derived inductively.

Fix some l ∈ {2, . . . , p(k)}. Recall that in an execution of φ∪{S,Z∗
l }, the session-ids

(sidΠ−1(1), . . . , sidΠ−1(l)) refer to l identical ideal instances of φ∪{S}. The sessions with
the first l − 1 session-ids in the list are simulated inside Z∗

l . Only the last ideal session
in this list, the one with session-id sidout = sidΠ−1(l), is relayed outside of Z∗

l . By the
uniform choice of Π, however, the distribution of this list of session-ids is invariant under
any (fixed) permutation. Hence, for runs of φ ∪ {S,Z∗

l }, we have for any fixed j < l:

Pr[¬B 6=Π−1(l) ∧BΠ−1(l)] = Pr[¬B 6=Π−1(j) ∧BΠ−1(j)]. (17)

33Here we use that we have defined computational indistinguishability with respect to non-uniform
distinguishers. In case of uniform distinguishers, the lemma can be shown with a more complicated but
uniform D that guesses l∗ by sampling runs of π ∪ {A, [ZR]} and approximating δl.
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Thus,

Pr[B 6=Π−1(l)] ≥ Pr[∃j ≤ l − 1 : BΠ−1(j)] ≥ Pr[∃j ≤ l − 1 : ¬B 6=Π−1(j) ∧BΠ−1(j)]

(∗)
=

l−1∑

j=1

Pr[¬B 6=Π−1(j) ∧BΠ−1(j)]
(17)
= (l − 1)Pr[¬B 6=Π−1(l) ∧BΠ−1(l)]. (18)

Here (∗) uses the fact that the events ¬B 6=Π−1(j) ∧ BΠ−1(j) are mutually exclusive for
different j. We obtain

Pr[B]
(∗)
= Pr[B 6=Π−1(l)] + Pr[¬B 6=Π−1(l) ∧BΠ−1(l)]

(18)

≤ Pr[B 6=Π−1(l)] + 1
l−1 Pr[B

6=Π−1(l)]

= l
l−1 Pr[B

6=Π−1(l)] = l
l−1 Pr[B

6=out ]. (19)

Here (∗) uses the fact that B ⇔ B 6=Π−1(l) ∨BΠ−1(l).
Therefore we have

tl = Pr[B in φ ∪ {S,Z∗
l }]

(19)

≤ l
l−1 Pr[B

6=out in φ ∪ {S,Z∗
l }]

(16)

≤ l
l−1

(
Pr[B 6=out in π ∪ {A,Z∗

l }] + h(k)
)

≤ l
l−1

(
Pr[B in π ∪ {A,Z∗

l }] + h(k)
)

(7)
= l

l−1

(
Pr[B in φ ∪ {S,Z∗

l−1}] + h(k)
)

= l
l−1(tl−1 + h(k))

Hence for any l ∈ {1, . . . , p(k)} we have

tl ≤




l∏

γ=2

γ

γ − 1


 t1 +




l∑

j=2

l∏

γ=j

γ

γ − 1


h(k)

= lt1 +
l∑

j=2

l
j−1 h(k) ≤ lt1 + l2h(k) ≤ p(k)µ(k) + p(k)2h(k) =: ν(k). (20)

Since p is polynomial, and µ and h are negligible, ν is negligible as well. Note that the
construction of ν does not depend on k, l, or z.

For bounding tl in case l > p(k) (this includes the case l = ∞), consider executions
of Z∗

l . Now if l > p(k), then Z∗
l runs the first p(k) subprotocol sessions that ρ asks for

internally as ideal instances, independently of the concrete value of l and Z∗
l ’s surround-

ing network. (Note that only the Π−1(l)-th invoked session gets relayed outside, and
that Π−1(l) = l > p(k) for l > p(k).) Since the invocation of more than p(k) sessions
causes Bρ and thus B, this implies that for l > p(k),

Pr[B in φ ∪ {S,Z∗
l }] = Pr[B in π ∪ {A,Z∗

l }] (21)

Pr[B in φ ∪ {S,Z∗
l }] = Pr[B in φ ∪ {S,Z∗

p(k)+1}]. (22)

We get for l > p(k):

tl = Pr[B in φ ∪ {S,Z∗
l }]

(22)
= Pr[B in φ ∪ {S,Z∗

p(k)+1}]

(21)
= Pr[B in π ∪ {A,Z∗

p(k)+1}]
(7)
= Pr[B in φ ∪ {S,Z∗

p(k)}] = tp(k)
(20)

≤ ν(k).
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Combining this with (20), we see that

∀l ∈ N ∪ {∞} : Pr[B in φ ∪ {S,Z∗
l }] ≤ ν(k). (23)

With Equation 7 for the case l > 1 and Lemma 26 for the case l = 1 (using that µ ≤ ν
by construction), we also obtain

∀l ∈ N ∪ {∞} : Pr[B in π ∪ {A,Z∗
l }] ≤ ν(k) (24)

for the same ν. The remaining bounds from the lemma statement can be derived from
Equation 23 and Equation 24 by using that

• Z∗
l and [Z∗

l ] proceed identically unless B occurs (since B is implied by B 6=out), so
Pr[B] is identical with these environments,

• Z∗
R first picks l ∈ {1, . . . , p(k)} and then runs Z∗

l , so any bound on Pr[B] that
holds for all Z∗

l also holds for Z∗
R. �

Lemma 29 In the situation of Definition 22, we have the computational indistinguisha-
bility EXECπ,A,Z∗

1
(k, z) ≈ EXECπ,A,Z∗

∞
(k, z).

Proof. First, we have the following chain of computational indistinguishabilities:

EXECπ,A,Z∗
R
≈ EXECπ,A,[Z∗

R
] ≈ EXECφ,S,[Z∗

R
] ≈ EXECφ,S,Z∗

R
. (25)

The first and third indistinguishability hold because Z∗
R and [Z∗

R] behave identically
unless B occurs, and Lemma 28 bounds Pr[B] by a negligible function in these networks.
The second indistinguishability holds since S is a good simulator, and [Z∗

R] is a priori
polynomial-time.

Thus, for any non-uniform polynomial-time distinguisher D, the following is negligi-
ble:
∣∣∣Pr[D(1k, z,EXECπ,A,Z∗

R
(k, z)) = 1]− Pr[D(1k, z,EXECφ,S,Z∗

R
(k, z)) = 1]

∣∣∣

=
1

p(k)

∣∣∣
p(k)∑

l=1

(
Pr[D(1k, z,EXECπ,A,Z∗

l
(k, z)) = 1]− Pr[D(1k, z,EXECφ,S,Z∗

l
(k, z)) = 1]

)∣∣∣

(7)
=

1

p(k)

∣∣∣
p(k)∑

l=1

(
Pr[D(1k, z,EXECπ,A,Z∗

l
(k, z)) = 1]− Pr[D(1k, z,EXECπ,A,Z∗

l+1
(k, z)) = 1]

)∣∣∣

=
1

p(k)

∣∣∣Pr[D(1k, z,EXECπ,A,Z∗
1
(k, z)) = 1]− Pr[D(1k, z,EXECπ,A,Z∗

p(k)+1
(k, z)) = 1]

∣∣∣
(∗)

≥
1

p(k)

(∣∣∣Pr[D(1k, z,EXECπ,A,Z∗
1
(k, z)) = 1]− Pr[D(1k, z,EXECπ,A,Z∗

∞
(k, z)) = 1]

∣∣∣+ ν(k)
)
.

(26)
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Here (∗) uses Lemma 28 and the fact that Z∗
p(k)+1 and Z∗

∞ behave identically unless B
occurs.

Thus
∣∣Pr[D(1k, z,EXECπ,A,Z∗

1
(k, z)) = 1] − Pr[D(1k, z,EXECπ,A,Z∗

∞
(k, z)) = 1]

∣∣ is
negligible and and hence

EXECπ,A,Z∗
1
≈ EXECπ,A,Z∗

∞
�

We can finally proceed to prove the main result.
Proof of Theorem 21. Recall that A always denotes the dummy adversary. As in
Definition 22 and all the preceding helping lemmas, let S be a simulator for a single
instance of φ, such that for all a priori polynomial-time Z, we have EXECπ,A,Z ≈
EXECφ,S,Z . Now we construct a good simulator S∞ for ρφ, such that ρφ ∪ {S∞} is
reactively polynomial-time, and such that EXECρπ ,A,Z ≈ EXECρφ,S∞,Z for every a
priori polynomial-time Z.

This construction of S∞ is actually the same as in previous proofs of universal com-
posability (e.g., as in the setting of [Can01]) and conceptually simple: S∞ internally
simulates a copy of the dummy adversary A for attacking ρ itself, and as many instances
of S as needed, one for each session that the simulation of A or the protocol ρ asks
for. Messages between A and instances of π are rerouted to the corresponding instances
of S. Messages between the instances of S and instances of protocol φ are directly re-
layed to S∞’s outside, i.e., to the φ-hybrid setting in which S∞ is executed. Informally,
we get the situation depicted in Figure 5 when S∞ is run with an environment Z and
protocol ρφ. Note that the only difference to the hybrid simulator from the proof the
composition theorem in the classical UC setting is that S∞ has no upper bound on the
number of instances of S it simulates. In particular, S∞ is not a priori polynomial-time
even if S is.

Z

A

ρ ..
. non-simulated

instances of φ

instances of S
simulations of..

.

subprotocol
invocations

. . .

Figure 5: The dashed box surrounds simulator S∞, running with environment Z and
protocol ρφ (i.e., with protocol ρ in the φ-hybrid model). S internally simulates the
dummy adversary A and instances of simulator S.

Now we make the following claim of execution equalities: for all environments Z,
auxiliary inputs z and security parameters k, we claim

EXECρπ ,A,Z(k, z) = EXECπ,A,Z∗
1
(k, z) (27)

EXECρφ,S∞,Z(k, z) = EXECπ,A,Z∗
∞
(k, z). (28)
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Equation 27 follows from Equation 8. For Equation 28, note that the permutation Π in
the definition of Z∗

l dictates which subsession instance queries are relayed where, but
since all subsessions in φ ∪ {S,Z∗

∞} are ideal instances, this does not have any impact.
(This has already been exploited in the proof of Equation 9.) Note also that Z∗

∞ never
invokes the external machines A and Z∗

∞, but relays all session-ids to the unbounded
number of internal instances of ρ and S.

Combining Equation 27 and Equation 28 with Lemma 29 shows the indistinguisha-
bility EXECρπ ,A,Z ≈ EXECρφ,S∞,Z .

It remains to show that ρφ ∪ {S∞} is reactively polynomial-time (and thus S∞ is
valid for ρφ). Fix any a priori polynomial-time Z to run with ρφ ∪ {S∞}. The above
argument for Equation 28 shows that

Pr[B in ρφ ∪ {S∞,Z}] = Pr[B in π ∪ {A,Z∗
∞}].

Now the right hand side of this equation is negligible by Lemma 28. Hence Pr[B] is
negligible in ρφ∪{S∞,Z}. Since in this network, event B occurs already if any machine
exceeds a certain fixed polynomial runtime bound (or if more than a fixed polynomial
number of machines are invoked), ρφ ∪ {S∞,Z} is polynomial-time with overwhelming
probability. Hence ρφ ∪ {S∞} is reactively polynomial-time. �

8 Example: Secure Message Transmission

In this section we will use a toy example to show how using UC with respect to reactive
polynomial time differs from using classical UC. In particular, we will demonstrate that
for using our notion, one does not have to perform more complicated checks whether a
protocol is polynomial time than one would have to do using the classical UC notion
anyway. For this, we will consider an implementation of the functionality FSMT for
secure message transmission. The functionality FSMT is defined as follows:

Functionality FSMT

The functionality FSMT proceeds as follows:

• When receiving an input (Send,m) from party P1, then send (Sent, |m|) to the
adversary, and send a delayed message (Sent,m) to P2.

34

Note that this functionality does not impose any bounds on the number or length of the
transmitted messages. Yet it is easy to see that it is reactively polynomial-time, because
the running time of FSMT is linear in the length of the inputs from the environment
and the simulator. We will realise FSMT in the authenticated channel model in the
case of static corruption and make use of an ideal key exchange functionality FKE. The
functionality FKE is defined as follows:

34By delayed we mean that the adversary may schedule the delivery of that message. That is, the
functionality queues the message and only sends it upon an explicit request from the adversary. See
[Can05a] for details.
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Functionality FKE

The functionality FKE proceeds as follows (on security parameter k):

• When receiving an input (Key) from party P1, then choose a random key K ∈
{0, 1}k, send (Key) to the adversary, and send (Key,K) as delayed messages to
P1 and P2.

Let (E,D) be an IND-CPA secure encryption scheme (we assume for simplicity that
the keys for (E,D) are uniformly distributed keys of length k). Note, that this encryption
scheme is not a priori polynomial-time, but polynomial-time in its input. Next, we
implement FSMT using the following (unsurprising) protocol.

Protocol SMT

• Whenever P1 receives (Send,m) from the environment, it invokes a new instance
of FKE. Let K be the key that is sent to P1 and P2 by FKE.

• Then P1 sends c := EK(m) to P2 over an authenticated channel.35

• Upon receipt of a message c from P1, P2 computes m := DK(c) and sends
(Sent,m) to the environment.

For simplicity, we only elaborate on the case that no party is corrupted.36 First, we
verify that SMT is indeed reactively polynomial-time. For each input (Send,m) from
the environment, one instance of the functionality FKE is invoked, and one encryption
and one decryption is performed, whose complexity is polynomial in the length of m. So
the total complexity of SMT is polynomial in the total length of all messages m received
from the environment, so SMT is reactively polynomial-time.

We now examine whether SMT emulates FSMT. By Theorem 19, it is sufficient to
give a simulator S for the dummy adversary A. The simulator S for the protocol SMT

is straightforward: Whenever the simulator receives (Sent, l) from FSMT, it informs the
environment that an instance of FKE has been invoked. When the environment tells
S to deliver the key to P1, the simulator chooses an arbitrary message m̃ of length l
and a random key K and informs the environment that the message EK(m̃) has been
transmitted over the authenticated channel.

To show that SMT emulates FSMT, we show that EXECSMT,A,Z and EXECFSMT,S,Z

are computationally indistinguishable for any a priori polynomial-time environment Z,
and that S is a valid simulator for φ. The computational indistinguishability follows
from the fact that (E,D) is IND-CPA and therefore the environment cannot distinguish
between EK(m̃) and EK(m). We will not go into details, since this part of the proof is
standard and does not differ from the analogous proof in the classical UC setting. To
see that S is valid, we have to see that {FSMT,S} is reactively polynomial-time. For
each message m that is sent, the machines in {FSMT,S} will only send messages that
are polynomial-time in the length of m (most notably the encryption EK(m̃)). Since
computing these messages also takes only polynomial time in |m|, the overall complexity

35We assume an authenticated channel where the adversary can reorder and drop, but not replay
messages.

36For secure message transmission, this is actually the interesting case.
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of {FSMT,S} is polynomially bounded in the total length of the messages m. Thus S is
valid. Note that interestingly, the simulator S by itself is not reactively polynomial-time.
When receiving (Sent, l) he chooses a random message m̃ of length l, and the integer l
is exponential in the length |l| of its representation. However, the fact that FSMT would
never send (Sent, l) without receiving a message of length l guarantees that the overall
network is reactively polynomial-time. This, too, shows the flexibility of our approach;
many earlier models of polynomial time in the UC setting would require FSMT to send
(Sent, 1ℓ) instead of (Sent, ℓ) to ensure that the running time of the simulator is bounded
in the length of its input 1ℓ.

We have seen that SMT emulates FSMT in the FKE-hybrid model. Assume now
that we want to implement FSMT without using an ideal key exchange. Let therefore
DH be a Diffie-Hellman key exchange. Under the decisional Diffie-Hellman assumption,
it is not hard to see that DH emulates FKE (in the case of static corruption at least).
To see that SMTDH (i.e., the protocol SMT using DH as subprotocol) emulates FSMT,
we have to apply the Universal Composition Theorem 21. The protocol DH is a priori
polynomial-time (since it generate only a single key of fixed length), so in particular it
is reactively polynomial-time. Furthermore, we have to see that SMTDH is reactively
polynomial-time. Analogous to the above, we count the number of steps occurring when
a message m is transmitted and see that the complexity of SMTDH is polynomial-time in
the total length of the messages transmitted. So SMTDH is reactively polynomial-time,
too. Therefore Theorem 21 applies, and SMTDH emulates FSMT.

9 Variants of our approach

In this section, we present two variants of our notion of polynomial time and of the
corresponding security notion. The goal is to give the reader the possibility to better
understand which of our design choices are necessary and which are just a matter of
taste.

In Section 9.1, we introduce a simplification of the definition of reactive polynomial
time, strong reactive polynomial time. Strong reactive polynomial time requires that the
overall system (including Z) runs in polynomial time with probability 1 (instead of just
overwhelming probability as in Definition 10). We show that this variant is not viable
because the composition theorem does not hold.

In Section 9.2, we introduce the notion of uniform reactive polynomial time. Recall
that in Definition 10, we required that for any reactively polynomial-time system S and
any a priori polynomial-time ITM Z, the complexity of S∪{Z} is polynomial-time with
overwhelming probability. However, no requirement was made as to how the polynomial
bounding the running time of S ∪{Z} depends on the polynomial bounding the running
time of Z. In contrast, in the case of uniform reactive polynomial time we require
that these two polynomials are polynomially related. We show that the choice between
reactive polynomial time in the sense of Definition 10 and uniform reactive polynomial
time is largely a matter of choice and that all our results also apply to uniform polynomial
time.

55



9.1 Strong reactive polynomial time

In Section 4 we have introduced the notion of a reactively polynomial-time network
S roughly as follows: For any ITM Z, the network S ∪ {Z} is polynomial-time with
overwhelming probability. However, the reader might question whether the additional
generality of allowing networks that run in superpolynomial time with negligible prob-
ability is not offset by the added complexity. Might not the following notion of strong
reactive polynomial time be more suitable for defining our security notion:

Definition 30 (Strong reactive polynomial time) A system S of ITMs runs in strong
reactive polynomial time if for any a priori polynomial time ITM Z the system S ∪{Z}
runs in a priori polynomial time (i.e., S ∪ {Z} always terminates after a polynomial
number of steps).

For example, it is not difficult to see that strong reactive polynomial time has the follow-
ing simple characterisation: For any sequence of incoming messages such that the total
length is polynomially-bounded, the system S runs a polynomial number of steps.37

Based on the notion of strong reactive polynomial time, we can now define security
analogous to Definition 11:

Definition 31 (UC with respect to strong reactive polynomial time) We say an
ITM M is strongly valid for π (or φ) if π ∪ {M} (or φ ∪ {M}) runs in strong reactive
polynomial time.

Then π emulates φ with respect to strong reactive polynomial time if for any ITM
A that is strongly valid for π, there is an ITM S that is strongly valid for φ such that
for every a priori polynomial-time ITM Z the following families of random variables are
computationally indistinguishable:

{
EXECπ,A,Z(k, z)

}

k∈N,z∈{0,1}∗
and

{
EXECφ,S,Z(k, z)

}

k∈N,z∈{0,1}∗

Although this definition looks very similar to Definition 11, it turns out that it is not a
suitable security definition, since not even the Universal Composition Theorem 21 holds
(not even its restricted variant Theorem 20):

Theorem 32 There are protocols π, φ and ρ such that
• The protocol ρ calls only one instance of its subprotocol.
• The protocols π, φ, ρ, ρπ, and ρφ are strongly reactively polynomial-time.
• The protocol π emulates φ with respect to strong reactive polynomial time.
• But ρπ does not emulate ρφ with respect to strong reactive polynomial time.

Proof. In this proof, we say “emulate” for “emulate with respect to strong reactive
polynomial time”.

37To see this, consider a polynomial-time ITM Z that sends random messages. Any sequence of
message of polynomial length is sent by this ITM with nonzero probability.
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We first describe the protocols π and φ. The protocol π expects a pair of the form
(1t, s, b) with t ∈ N, s ∈ N, and b ∈ {0, 1} from the environment (or the embedding
protocol). When b = 1, it sends s to the adversary. Otherwise, the message is ignored.

The protocol φ also expects a pair of the form (1t, s, b). If b = 1, it sends s to the
adversary. If b = 0, it sends s to the adversary with probability γ(k) := 2−k where k is
the security parameter.

Both protocols accept only one message from the environment. Further messages are
ignored.

It is easy to see that π and φ are both strongly reactively polynomial-time.
We will now show that π emulates φ. Let a strongly valid adversary A be given.38

We set S := A. Since φ deviates from the program of π with probability at most
γ(k), the ensembles EXECπ,A,Z and EXECφ,S,Z are statistically indistinguishable for
any environment Z. To show that π emulates φ we therefore only have to show that
S = A is strongly valid for φ. Let an a priori polynomial-time ITM Z be given. Let
Z ′ be the ITM that simulates Z with the following modification: When Z would send
a message (1t, s, 0) to the protocol, Z ′ sends with probability γ(k) the message (1t, s, 1)
and with probability 1 − γ(k) the message (1t, s, 0). Then TIMEπ,A,Z′ and TIMEφ,S,Z

have the same distribution and Z ′ is a priori polynomial-time. Therefore if there is
an a priori polynomial-time ITM Z such that φ ∪ {S,Z} is not a priori polynomial-
time then there is an a priori polynomial-time ITM Z ′ such that π ∪ {A,Z} is not a
priori polynomial-time. The latter is a contradiction to the strong validity of A. Thus
φ ∪ {S,Z} is a priori polynomial-time and S is strongly valid. Therefore π emulates φ.

We now introduce the protocol ρ. This protocol expects a message (1t, s) from the
environment. Then it sets b := 1 if and only if t = s and b := 0 otherwise. Finally, it
sends (1t, s, b) to its subprotocol. As did π and φ, this protocol accepts only a single
message from the environment.

It is straightforward to check that ρ, ρπ and ρφ are strongly reactively polynomial-
time.

We proceed to show that ρπ does not emulate ρφ. Consider the following adversary A.
When receiving a message s from the subprotocol π, it sends 1s to the environment. We
first check that A is strongly valid for ρπ. The critical point is the fact that A receives an
s in binary representation and outputs 1s which takes time linear in s, i.e., exponential
in the length of s. However, it turns out that ρφ ∪ {A} is a priori polynomial-time
nevertheless. To see this, consider an a priori polynomial time ITM Z. Whenever the
ITM Z sends a message (1t, s) to ρ with t 6= s, ρ sends (1t, s, 0) to π. The message
(1t, s, 0) is ignored by π. So π only outputs s if Z sends a message (1t, s) with s = t.
Since Z is a priori polynomial-time, t is polynomially bounded in the security parameter.
Therefore the message s received by the adversary A is guaranteed to be polynomially
bounded, too, so the running time spent by A for outputting 1s is polynomially bounded
in the security parameter. Hence A is strongly valid for π.

38In the context of UC with respect to strong reactive polynomial time, by strongly valid we mean of
course that π∪{A} is strongly reactively polynomial-time. The same applies to strongly valid simulators.
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Now assume a simulator S for A. Without loss of generality, we may assume that
S expects a message s from the subprotocol φ and then either ignores that message or
sends a single message m to the environment. Let P (k, s) denote the probability that
the simulator S sends a message m = 1s upon receiving s when running with security
parameter k. Let L(k) be the largest nonnegative integer such that P (k, s) ≥ 1

2 for all
s ≤ L(k). (We set L(k) := ∞ if P (k, s) ≥ 1

2 for all s.)
We distinguish two cases. First, consider the case that L(k) is polynomially-bounded

in k for sufficiently large k. Then we construct an environment Z that upon security
parameter k sends (1t, s) to ρ with t := s := L(k) + 1 and outputs 1 if it receives the
message 1s from the simulator.39 Obviously, Z is a priori polynomial-time. (In case L(k)
is not efficiently computable, we can assume that Z extracts L(k) from its auxiliary
input.) By construction of ρ, π and A, we then have Pr

[
EXECρπ ,A,Z = 1

]
= 1 for

sufficiently large k. On the other hand, by definition of P (k, s) we have Pr
[
EXECρφ,S,Z =

1
]
= P (k, s) = P (k, L(k) + 1) < 1

2 for sufficiently large k (namely whenever L(k) 6= ∞).
Thus EXECρπ ,A,Z and EXECρφ,S,Z are computationally distinguishable.

In case that L(k) is not polynomially bounded, we construct an ITM Z that chooses
t := 0 and s := min{L(k), 2k} and sends (1t, s) to ρ. Again, Z is a priori polynomial-

time. However, we have Pr
[
TIMEρφ,S,Z > min{L(k), 2k}

]
≥ Pr

[
S sends 1min{L(k),2k}

] (∗)

≥

γ(k)P (k,min{L(k), 2k}) ≥ γ(k)12 > 0. Here (∗) uses the fact that even in the case b = 0,
the subprotocol φ sends s to the simulator with probability γ(k). Thus ρφ∪{S,Z} does
not run in a priori polynomial time, so S is not strongly valid for φ. So summarising,
there is no strongly valid simulator S such that EXECρπ ,A,Z and EXECρφ,S,Z are com-
putationally indistinguishable for all a priori polynomial-time Z. Hence ρπ does not
emulate ρφ. �

An interesting question at this point is whether this counterexample still holds (pos-
sibly with a different choice for γ) if we allow S ∪ {Z} to run in expected polynomial
time in Definition 30. However, in this case consider the simulator S that accepts any s,
but aborts after 1/γ(k) steps. This simulator produces a good simulation: Since 1/γ(k)
is superpolynomial, the abort occurs only for t 6= s. In this case no output is expected
from the real adversary either, so the real and ideal views are indistinguishable. And
this simulator is strongly valid (w.r.t. expected polynomial time): In the case t 6= s, it
runs 1/γ(k) steps with probability γ(k).

So at least this counterexample does not apply to a notion using expected polynomial
time. However, it demonstrates that the simulator may have to explicitly bound its run-
ning time by the inverse of some probability γ, where γ is—intuitively—the probability
that a naive simulator would run superpolynomial time. Since it is not clear whether
such a bound γ can always be explicitly constructed or efficiently computed, we might
expect that, even if it holds, the proof of even the simple composition theorem will be
much harder in the case of expected polynomial time. Nevertheless, it would be an
interesting question to see how a notion of reactive polynomial time based on expected

39Strictly speaking, this definition does not make sense for L(k) = ∞. However, this only happens for
finitely many k, so we can assume that Z just aborts in these cases.
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polynomial time behaves and what techniques would be used in the proofs.

9.2 Uniform reactive polynomial time

In Definition 10, we allow a reactively polynomial-time network S to run in time p(k+q)
where q is the runtime of the ITM Z and p is some polynomial that may depend on Z.
As mentioned on page 29, we might also require that p does not depend on Z, leading
to a stricter notion of uniform reactive polynomial time. In this appendix, we define
this alternative notion and show that the properties we proved Sections 5–7 also hold
for this somewhat stricter notion. Thus the choice which notion to use is more a matter
of personal preference than of formal necessity. However, it should be noted that with
uniform reactive polynomial time, some arguments are a slightly more awkward since
one has to keep track that p is independent of Z. (This is somewhat reminiscent of the
difference between UC and specialised-simulator UC [Lin03].)

Definition 33 (Uniform reactive polynomial time) A system S of ITMs runs in
uniform reactive polynomial time if there exists a polynomial p such that for any a
priori polynomial time ITM Z and any polynomial q bounding the running time of Z
(cf. Definition 8), there is a negligible function µ such that for all k ∈ N and z ∈ {0, 1}∗

we have that TIMES∪{Z}(k, z) > p(k + q(k)) with probability at most µ(k).

Definition 34 (UC with respect to uniform reactive polynomial time) We say
an ITM M is uniformly valid for π (or φ) if π ∪ {M} (or φ ∪ {M}) runs in uniform
reactive polynomial time.

Then π emulates φ (with respect to uniform reactive polynomial time) if for any
ITM A that is uniformly valid for π, there is an ITM S that is uniformly valid for φ
such that for every a priori polynomial-time ITM Z the following families of random
variables are computationally indistinguishable:

{
EXECπ,A,Z(k, z)

}

k∈N,z∈{0,1}∗
and

{
EXECφ,S,Z(k, z)

}

k∈N,z∈{0,1}∗

In the following sections, we show that the properties we proved in Sections 5–7 still
hold for the alternative notion in Definitions 33 and 34.

Basic properties. Lemma 12 still holds because uniform reactive polynomial time
implies reactive polynomial time. So the conditions of Lemma 12 also hold the present
setting. Lemmas 13 and 15 holds with identical proofs since these proofs do not use the
definition of validity at all. Thus all results from Section 5 still hold for uniform reactive
polynomial time.

Dummy-Adversary. All our results concerning the dummy adversary carry over to
the case of uniform reactively polynomial time.

Lemma 35 (Uniform validity of the dummy adversary) If π is a uniformly reac-
tively polynomial-time protocol, then the dummy adversary is uniformly valid for π.
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Proof. Let Z be an ITM with runtime polynomial q and consider the system {Z, Ã} ∪
π. Since Ã only forwards messages between Z and π, we can construct an a priori
polynomial-time ITM Z ′ that directly sends and receives those messages to and from
π. Then, assuming the same random tapes in both networks, TIME{Z,Ã}∪π(k, z) ≤

c · TIME{Z′}∪π(k, z) for some fixed c > 0 (independent of Z). Since π is uniformly
reactively polynomial-time, we have that TIME{Z′}∪π(k, z) ≤ p(k + q(k)) with over-
whelming probability in k for some polynomial p which is independent of Z ′. Thus
TIME{Z,Ã}∪π(k, z) ≤ c · p(k + q(k)) with overwhelming probability. Since this holds for

all Z (and the polynomial c·p does not depend on Z), it follows that {Ã}∪π is uniformly
reactively polynomial-time and thus Ã is uniformly valid for π. �

Definition 36 (Uniform emulation with respect to the dummy adversary) We
say π emulates φ with respect to the dummy adversary and uniform reactive polynomial
time if for the dummy adversary Ã there is an ITM S̃ that is uniformly valid for φ such
that for every a priori polynomial-time ITM Z the ensembles EXECπ,Ã,Z and EXECφ,S̃,Z
are computationally indistinguishable.

Theorem 37 (Completeness of the dummy adversary) Assume that π is uniformly
reactively polynomial-time. Then π emulates φ with respect to uniform reactive polyno-
mial time if and only if π emulates φ with respect to the dummy adversary and uniform
reactive polynomial time.

Proof. We describe the changes that must be applied to the proof of Theorem 19. First,
consider the construction of the polynomial p that bounds TIMEπ,A,Z(k, z) with over-
whelming probability. In the present case we can achieve a stronger condition: We can
choose p such that p(k) ≤ p̃(k+q(k)) for any polynomial q bounding the running time of
Z where p̃ is a fixed polynomial independent of Z and q. Then, the construction of the
simulator S and the proof that EXECπ,A,Z and EXECφ,S,Z are computationally indis-
tinguishable is unchanged. (It does not use the definition of validity, only the property
that p bounds TIMEπ,A,Z(k, z) with overwhelming probability.) Thus it is only left to
show that S is uniformly valid.

Since Z ′
p simulates Z and A, but A for at most p steps, we have that the running

time of Z ′
p is bounded by q′(k) := c1 · (q(k) + p(k)) for some constant c1 (in the sense of

Definition 8). The constant c1 reflects a possible simulation overhead and is independent
of Z and q. Since S̃ is uniformly valid for φ, it follows that TIMEφ,S̃,Z′

p
≤ p1(k +

q′(k)) with overwhelming probability. Again, p1 is independent of Z and q. Then,
since the network φ ∪ {Z ′

p, S̃} behaves differently from φ ∪ {Z ′, S̃} only if Z ′
p outputs

beep which happens with negligible probability, it follows that TIMEφ,S̃,Z′ ≤ c2 · p1(k +
q′(k)) with overwhelming probability. Here c2 again represents some simulation overhead
independent of Z and q. Then we also have TIMEφ,S,Z ≤ c3c2 · p1(k + q′(k)) with
overwhelming probability with some overhead c3 independent of Z and q. Substituting
the definitions of q′ and p, we get that TIMEφ,S,Z ≤ c3c2 ·p1(k+ c1 · (q(k)+ p̃(k+ q(k))))
where c1, c2, c3, p1, p̃ are independent of Z and q. Thus we can choose some polynomial
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p∗ independent of Z and q such that TIMEφ,S,Z ≤ p∗(k + q(k)). Since this holds for
every a priori polynomial-time Z and any q bounding the running time of Z, it follows
that φ∪{S} is uniformly reactively polynomial-time and thus S uniformly valid for φ.�

Universal Composition Theorem. Since the Simple Composition Theorem is a
direct consequence of the Universal Composition Theorem, it is sufficient to show that
the Universal Composition Theorem 21 holds for uniform reactive polynomial time.

Theorem 38 (Universal Composition Theorem for uniform reactive polynomial time)
Let π, φ and ρ be protocols, such that π and ρπ are uniformly reactively polynomial-time.
The protocol ρ may call an arbitrary number of subprotocol instances. Assume that π
emulates φ. Then ρπ emulates ρφ.

We will now sketch the modifications that need to be applied to the proof of Theorem 21
in order to prove Theorem 38. We assume the notation used in the proof of Theorem 21.
Similar to that proof, we here let A denote the dummy adversary and choose a fixed sim-
ulator S such that φ∪{S} is uniformly reactively polynomial-time, and that for every a
priori polynomial-time Z we have that EXECπ,A,Z and EXECφ,S,Z are computationally
indistinguishable. Additionally, by rZ we denote a polynomial bounding the running
time of Z (in the sense of Definition 8).

Then, for the new proof Definitions 22, 23 and 24 and Lemmas 25, 27, 28, and 29
remain unchanged. These lemmas were shown to hold under the assumption that π, ρπ,
and {S}∪φ are reactively polynomial-time, that EXECπ,A,Z ≈ EXECφ,S,Z for all a priori
polynomial-time Z, and that Z is an a priori polynomial-time environment. Then the
lemmas in particular hold under the stronger condition of the present proof that π, ρπ,
and {S}∪φ are uniformly reactively polynomial-time, that EXECπ,A,Z ≈ EXECφ,S,Z for
all a priori polynomial-time Z, and that Z is an a priori polynomial-time environment.
The same holds for Lemma 26, but we need to somewhat strengthen Lemma 26:

Lemma 39 In the situation of Definition 22, there exist polynomials p = p(k) and
q = q(k), and a negligible function µ = µ(k) such that for all k ∈ N and all auxiliary
inputs z ∈ {0, 1}∗ for Z, the following holds. We have that Pr[Bp,q] ≤ µ(k), both in
π ∪ {A,Z∗

1,p} and in φ ∪ {S,Z∗
1,p}.

Moreover, we can write p and q as p(k) = p̃(k + rZ(k)) and q(k) = q̃(k + rZ(k))
where p̃ and q̃ do not depends on Z and rZ .

(Note that only the part after moreover is changed with respect to Lemma 26.)
Proof. To show Lemma 39, we have to show that in the proof of Lemma 26 we can
choose p and q such that they additionally satisfy the conditions p(k) = p̃(k + rZ(k))
and q(k) = q̃(k + rZ(k)).

For p this is straightforward: p was chosen as a polynomial such that TIMEρπ ,A,Z ≤
p(k) with overwhelming probability. Since in our setting, ρπ∪{A} is uniformly reactively
polynomial-time, and since rZ bounds the running time of Z, we can therefore choose p
with p(k) = p̃(k + rZ(k)) where p̃ is independent of rZ and Z.
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For q the situation is slightly more complicated. The polynomial q was chosen such
that TIMEφ,S,[Z∗

1,p]p
≤ q(k) with overwhelming probability. To show that q can fulfill

the additional constraint, we first have to analyze the runtime bound of [Z∗
1,p]p. By

construction, [Z∗
1,p]p simulates Z, ρ and at most p instances of the dummy adversary and

π. Furthermore, ρ and each instance of π is executed for at most p steps. Therefore the
running time of [Z∗

1,p]p is bounded by s1(k) := s2(k+ rZ(k)+ p(k)) for some polynomial
s2 that does not depend on Z and rZ . Since φ∪ {S} is uniformly reactively polynomial-
time by assumption, it follows that TIMEφ,S,[Z∗

1,p]p
≤ s3(k + s1(k)) with overwhelming

probability where the polynomial s3 does not depend on Z and rZ . We can therefore
choose a polynomial q̃ with q̃(k+ rZ(k)) ≥ s3(k+ s2(k+ rZ(k)+ p̃(k+ rZ(k)))) = s3(k+
s1(k)) such that q̃ does not depend on Z and rZ . Then TIMEφ,S,[Z∗

1,p]p
≤ q̃(k+rZ(k)) =:

q(k) with overwhelming probability, so we have shown that we can choose q satisfying
the additional constraint q(k) = q̃(k + rZ(k)). �

We are now ready to prove Theorem 38. The construction of the simulator S∞ and
the proof that EXECρπ ,A,Z ≈ EXECρφ,S∞,Z are as in the proof of Theorem 21. However,

to prove Theorem 38, we need to additionally show that ρφ∪{S∞} is uniformly reactively
polynomial-time. To achieve this, we first show as for Theorem 21 that Pr[B] is negligible
in ρφ∪{S∞,Z}. Furthermore, note that by construction of S∞ there is a fixed polynomial
s (not depending on Z or rZ) such that TIMEρφ,S∞,Z(k, z) ≤ s(k+Rk,z+P 1

k,z+P 2
k,z+Qk,z)

where the random variable Rk,z denotes the number of steps Z runs, P 1
k,z denotes the

number of steps the machines from ρ run, P 2
k,z denotes the number of sessions of π

invoked, and Qk,z the maximum number of steps any of the instances of π runs. By
definition of rZ we have Rk,z ≤ rZ(k) with probability 1, and by definition of B = Bp,q,
the fact that Pr[B] is negligible implies that P 1

k,z ≤ p(k), P 2
k,z ≤ p(k), and Qk,z ≤

p(k) holds with overwhelming probability. Thus with overwhelming probability we have

TIMEρφ,S∞,Z(k, z) ≤ s(k+ rZ(k) + 2p(k) + q(k))
(∗)
= s(k+ rZ(k) + 2p̃(k+ rZ(k)) + q̃(k+

rZ(k))) ≤ s̃(k + rZ(k)) for a suitable polynomial s̃ that does not depend on Z or rZ .
(Here (∗) uses Lemma 39.) Since this holds for any a priori polynomial-time Z, we have
that ρφ ∪ {S∞} is uniformly reactively polynomial-time and Theorem 38 follows. �

10 Relation to classical notions

In this section we investigate in what relation our notion stands to the classical UC
definitions. Since the classical definitions are not meaningful for protocols that are not a
priori polynomial-time, we are interested in the case that π and φ are a priori polynomial-
time protocols. In this case, it turns out that UC with respect to reactive polynomial
time lies strictly between two common classical definitions: UC and specialized-simulator
UC40. To show the strictness of these implications, we need the following complexity

40Specialized-simulator UC is defined like UC, with the difference that the simulator may depend on
the environment [Lin03]. We stress that we consider the specialized-simulator UC notion as defined in
[Lin03], which is not equivalent to the UC notion from [Can05a]. There also exists a specialized-simulator
UC variant in [Can05a] that is equivalent to standard UC (see [Can05a, Claim 12]).
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assumption:

Definition 40 (Time-lock puzzle) A time-lock puzzle consists of an ITM V (the ver-
ifier) and an ITM P (the prover) such that

• Given arguments (1k, s), the ITM V runs in polynomial time in k. Given arguments
(1k, s), the ITM P runs in polynomial time in k + s.

• Easiness. For any polynomial p we have that

min
s≤p(k)

P
(
〈P(1k, s),V(1k, s)〉 = 1

)

is overwhelming in k. (We call s the hardness of the puzzle.)
• Hardness. For any ITM B running in polynomial time in the length of its first
argument there exists a polynomial p, such that

sup
s≥p(k)
z∈{0,1}∗

P
(
〈B(1k, s, z),V(1k, s)〉 = 1

)

is negligible in k.
In this definition 〈P,V〉 denotes the distribution of the output of V after an interaction
with P.

Note the following differences between our definition and that of [HU05, HU06]: First,
following [Unr06], we allow interactive time-lock puzzles, while [HU05] used the stronger
assumption of non-interactive ones. However, all results of [HU06] were shown to hold
also for interactive time-lock puzzles [Unr06]. Further, [HU05, HU06, Unr06] allow the
prover to depend of the polynomial p in the easiness condition while we require the
same prover for any p, i.e., we impose a uniformity requirement on honest prover. All
constructions known to the authors (in particular those from [RSW96, Unr06]) fulfill
this additional requirement.

We can now state the relations between our model and classical notions for the case
of a priori polynomial-time protocols. Note that we have included another notion be-
sides classical UC and classical specialized-simulator UC, namely general composability.
Intuitively, general composability is the weakest security notion that still fulfils the Uni-
versal Composition Theorem 21. Although no workable characterisation for this notion
is known, it is insofar an important notion that is specifies the minimum properties we
might expect from a UC-like security notion.

Theorem 41 By classical UC we denote UC as defined in Definition 4, where polyno-
mial time means a priori polynomial time. By classical specialized-simulator UC we
denote the notion from [Lin03] which is defined like classical UC, except that the simu-
lator may depend on the environment.

A protocol π is said to emulate φ with respect to (polynomially-bounded) general
composability if for every a priori polynomial-time protocol ρ we have that ρπ emulates ρφ

in the stand-alone model (see [Lin03] for a detailed definition of general composability).
Then for a priori polynomial-time protocols π and φ, consider the following state-

ments.
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(i) π emulates φ with respect to classical UC.
(ii) π emulates φ with respect to reactive polynomial time.
(iii) π emulates φ with respect to general composability.
(iv) π emulates φ with respect to classical specialized-simulator UC.
Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

If time-lock puzzles exist, all implications are strict in the sense that there is a pair
of protocols π, φ such that the implication does not hold.

Proof. First we show (i) ⇒ (ii), i.e., that if π emulates φ with respect to classical UC,
then π emulates φ with respect to reactive polynomial time.

Let p a polynomial such that the running time of π upon security parameter k is
bounded by p(k).

Let Ãp be defined like the dummy adversary, except that upon security parameter
k, no message of length greater than p(k) is sent or received to/from the protocol or
environment, and at most p(k) messages are sent to/from the environment and the
protocol, respectively.

Then π emulates φ with respect to reactive polynomial time if and only if π emulates
φ with respect to reactive polynomial time and the dummy adversary Ãp. This is shown
analogous to Theorem 19, except that we additionally use that we can w.l.o.g. assume
the environment not to sent more than p(k) messages or messages of length greater
than p(k) through the dummy adversary since the protocol (having runtime bound p(k))
would not be able to read these superfluous messages.

Assume that π emulates φ with respect to classical UC. Since Ãp is a priori polynomial-
time, by definition of classical UC there is a a priori polynomial-time simulator S̃p

such that for all a priori polynomial-time environments Z the ensembles EXECπ,Ãp,Z

and EXECφ,S̃p,Z
are computationally indistinguishable. Since S̃p and π are a priori

polynomial-time, the network π ∪ {S̃p} is a priori polynomial-time and therefore in par-
ticular reactively polynomial-time. So S̃p is valid for φ. Thus π emulates φ with respect
to reactive polynomial time and the dummy adversary Ãp. As seen above, this implies
that π emulates φ with respect to reactive polynomial time. This shows (i) ⇒ (ii).

Now we are going to show (ii) ⇒ (iv), i.e., that if π emulates φ with respect to reactive
polynomial time, then π emulates φ with respect to classical specialised-simulator UC. To
prove this, let an adversary A and an environment Z be given, both a priori polynomial-
time, and we have to show that there is an a priori polynomial-time simulator S such
that EXECπ,A,Z and EXECφ,S,Z are computationally indistinguishable.

Since A and π are a priori polynomial-time, A is valid for π. By assumption, π
emulates φ with respect to reactive polynomial time, so there is a valid simulator S ′

for φ such that the ensembles EXECπ,A,Z and EXECφ,S′,Z are computationally indis-
tinguishable. However, S ′ is not necessarily a priori polynomial-time. Since S ′ is valid,
and Z is a priori polynomial-time, the network φ ∪ {S ′,Z} is polynomial-time with
overwhelming probability, so there is a polynomial p such that TIMEφ,S′,Z(k, z) ≤ p(k)
with overwhelming probability. So in particular S ′ runs at most p(k) steps with over-
whelming probability. Let S be as S ′, except that when running more than p(k) steps S
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aborts. Since this happens only with negligible probability in an execution of φ∪{S,Z},
we have that EXECφ,S′,Z and EXECφ,S,Z are computationally indistinguishable (in fact
even statistically indistinguishable). Summarising, EXECπ,A,Z and EXECπ,S,Z are com-
putationally indistinguishable, and S is a priori polynomial-time, thus π emulates φ
with respect to classical specialised-simulator UC.

Now we show (ii) ⇒ (iii), i.e., that if π emulates φ with respect to reactive polyno-
mial time, then π emulates φ with respect to general composability. For any a priori
polynomial-time protocol ρ, both ρπ and ρφ are a priori polynomial-time and thus in
particular reactively polynomial-time. Thus by Theorem 21 ρπ emulates ρφ with re-
spect to reactive polynomial time. Above we showed that for a priori polynomial-time
protocols, reactive polynomial time UC implies classical specialised-simulator UC, so
ρπ emulates ρφ with respect to classical specialised-simulator UC. This again implies
that ρπ emulates ρφ in the stand-alone model (see [Lin03]). Since this holds for any a
priori polynomial-time protocol ρ, we have that π emulates φ with respect to general
composability.

In [Lin03] it was shown that (iii) ⇒ (iv), so summarising we have (i) ⇒ (ii) ⇒ (iii) ⇒
(iv). So all implications are proven.

We are left to show that the implications are strict if time-lock puzzles exist.
First, we show that there are protocols π1 and φ1 such that π1 emulates φ1 with

respect to general composability, but π1 does not emulate φ1 with respect to reactive
polynomial time. For this purpose, we use a pair of protocols proposed in [HU05] to
separate the notions of UC and specialised-simulator UC.41 We give a short sketch of
their construction. For this, we first review the definition of a time-lock puzzle. A
time-lock puzzle is an interactive protocol where one party (the prover) tries to convince
another party (the verifier) that he has a given amount of computational power. More
exactly, the verifier gets a parameter s ∈ N (the strength of the puzzle) as input. The
ensuing interaction we call the time-lock puzzle. If the verifier output 1 after that
interaction, we say the prover solved the puzzle. For any polynomial p, there is an
a priori polynomial-time prover P such that P solves time-lock puzzles with strength
s ≤ p(k) with overwhelming probability. On the other hand, for any a priori polynomial-
time proverB, there is a polynomial q such that B solves puzzles of strength s ≥ q(k) only
with negligible probability. For a formal definition, see [HU05] (who only investigate the
case of one-round time-lock puzzles) or [Unr06] (which generalises the results of [HU05]).

The protocols proposed in [HU05] are the following (called M0 and M1 there). Let
k denote the security parameter. The protocol π1 first randomly chooses a strength
s ∈ {20, . . . , 2k}. Then it performs a time-lock puzzle of strength s with the environment
as prover. After this, it performs a time-lock puzzle of strength s with the adversary as
prover. After this, π1 sends the message b = 0 to the environment.

The protocol φ1 behaves identically to π1, with the following difference: When the
environment solves the time-lock puzzle and the simulator does not solve it, then φ1

41Actually, [HU05] separated the corresponding notions in the Reactive Simulatability framework
[PW01, BPW04b]. However, all their proof carry easily over to the UC framework. The same holds for
[HU06].
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sends the message b = 1 to the environment. Otherwise b = 0 is sent to the environment
as would have done π1.

Then π1 does not emulate φ1 with respect to classical UC due to the following reason:
For any a priori polynomial-time simulator S, there is a polynomial p such that S solves
puzzles with strength s ≥ p(k) only with negligible probability. Furthermore there is
an a priori polynomial-time environment that can solve puzzles of strength s ≤ 2p(k)
with overwhelming probability. Since a puzzle of strength p(k) ≤ s ≤ 2p(k) is asked
by φ1 with probability 1

k , with noticeable probability the environment solves the puzzle
while the simulator does not. Thus the environment gets message b = 1 with noticeable
probability when running with φ1 and S, but gets only b = 0 when running with π1 and
some adversary; the environment can hence distinguish. Since for any simulator such a
distinguishing simulator exists, π1 does not emulate φ1 with respect to classical UC.

On the other hand, if the simulator may depend on the environment, as in the
case of classical specialised-simulator UC, let p be a polynomial such that the a priori
polynomial-time environment Z solves puzzles of strength s ≥ p(k) only with negligible
probability. Then we can construct an a priori polynomial-time simulator that solves
all puzzles of strength s ≤ p(k). With overwhelming probability it then holds that if the
environment solves the puzzle, the simulator does so, too. Thus the message sent by φ1

will be b = 0 with overwhelming probability, so that the environment cannot distinguish
φ1 from π1. Therefore π1 emulates φ1 with respect to classical specialised-simulator UC.

For detailed constructions and proofs we refer to [HU05]. The result can somewhat
be strengthened: It is easy to see that the proof that π1 emulates φ1 with respect to
classical specialised-simulator UC generalises to the case where a polynomial number of
copies of π1 and φ1, respectively, run concurrently. From this it follows that π1 emulates
φ1 with respect to general composability [Lin03]. This is detailed in [Unr06].

We now show that π1 does not emulate φ1 with respect to reactive polynomial time.
From this it follows that the implication (ii) ⇒ (iii) is strict.

Let A be the a priori polynomial-time adversary that solves time-lock puzzles given
by π up to an (arbitrarily chosen) strength of s = 1. Since π1 and A are a priori
polynomial, A is valid for π1. For a polynomial p, let Zp be the a priori polynomial-time
environment that solves time-lock puzzles given by π1 or φ1 of a strength of s ≤ p(k)
with overwhelming probability. Let S be any simulator that is valid for φ1. Then
φ1 ∪ {S,Z0} is polynomial-time with overwhelming probability, so there is a polynomial
q bounding TIMEφ1,S,Z0 . Let Sq be the simulator that behaves as does S, but aborts
when running more than q(k) steps. Then Sq is a priori polynomial-time, so there is
a polynomial r such that in an execution of φ1 ∪ {Sq,Z0} the simulator Sq solves time-
lock puzzles of strength s ≥ r(k) only with negligible probability. Since Sq simulates S
faithfully up to a negligible probability in an execution of φ1 ∪ {Sq,Z0}, it follows that
also S solves time-lock puzzles of strength s ≥ r(k) only with negligible probability in
an execution of φ1 ∪ {S,Z0}. Since the messages sent by φ1 to S do not depend on
whether the environment solves its puzzle or not, the probability that S solves time-lock
puzzles of strength s ≥ r(k) in an execution of φ1 ∪ {S,Z2p} is negligible, too. On the
other hand, Z2p solves puzzles with strength s ≤ 2p(k) with overwhelming probability.
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Since φ1 chooses p(k) ≤ s ≤ 2p(k) with probability 1
k , it follows that with noticeable

probability the environment Zp solves its puzzle while the simulator S does not. Then
the message b = 1 is send to the environment by φ1 so that the environment Zp can
distinguish between π1 and φ1. Therefore π1 does not emulate φ1 with respect to reactive
polynomial time. Since π1 does emulate φ1 with respect to general composability (see
above), the implication (ii) ⇒ (iii) is strict.

We will now show that the implication (i) ⇒ (ii) is strict. For this, we use a slight
modification of the protocols given by [HU05]. We modify π1 and φ1 insofar that the
time-lock puzzle is only given to the adversary/simulator if the environment beforehand
solves its time-lock puzzle. We call the resulting protocols π2 and φ2. For these modified
protocols the results from [HU05] still hold (with almost unmodified proofs), in particular
π2 does not emulate φ2 with respect to classical UC. However, we will show that π2 does
emulate φ2 with respect to reactive polynomial time. From this it follows that the
implication (i) ⇒ (ii) is strict.

By Theorem 19 it is sufficient to construct a simulator S̃ for the dummy adversary Ã.
This simulator S̃ behaves like the dummy adversary: It follows the instructions given by
the environment (since the dummy adversary would do so, too) and forwards all messages
from the protocol φ2 to the environment. But whenever the environment instructs the
simulator to send a given solution a for the time-lock puzzle to φ2, the simulator runs
the algorithm for solving the puzzle (which runs in polynomial-time in s and outputs a
correct solution a′ with overwhelming probability) and then sends that correct solution
a′ instead of a.42 Since the simulator solves all puzzles with overwhelming probability,
the message sent by φ2 to the environment will be b = 1 with overwhelming probability,
and therefore the environment cannot distinguish. It is left to show that S is valid for
φ. The only critical point is the running time of the algorithm for solving the time-lock
puzzle. Let an a priori polynomial-time environment Z be given. Then there exists a
polynomial p such that the probability is negligible that Z solves puzzles with strength
s ≥ p(k). Since by construction φ2 give a puzzle of strength s to the simulator only if
the environment previously solved a puzzle of that strength. Therefore φ2 gives puzzles
of strength s ≥ p(k) to S only with negligible probability. Since the running time
needed by S for solving the puzzle is bounded by q(s) for some polynomial s, it follows
that when interacting with Z the running time needed by S for solving the puzzle is
bounded by q(p(k)) with overwhelming probability. Thus π ∪{S,Z} is polynomial-time
with overwhelming probability, and since this holds for all a priori polynomial-time
environments Z, it follows that S is valid for φ2. Thus π2 emulates φ2 with respect to
reactive polynomial time time. Since π2 does not emulate φ2 with respect to classical
UC, the implication (i) ⇒ (ii) is strict.

We have shown that the implications (i) ⇒ (ii) ⇒ (iii) are strict. In [HU06] it was
shown that the implication (iii) ⇒ (iv) is strict, too, given the existence of time-lock
puzzles. So all implications given in the theorem are strict. �

42This assume that the solution to the time-lock puzzle is a single message as in [HU05]. If the solution
is an interaction as in [Unr06], the simulator will first solve (interactively) the puzzle given by φ2 and
then (interactively) give a new puzzle of the same strength to the environment.
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