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Abstract

IND-CCA (Indistinguishability under adaptive chosen-ciphertext attacks) is a central no-
tion of security for public-key encryption, defined and targeted in many papers. Non-triviality
of the notion requires that the adversary not query the challenge ciphertext to the decryp-
tion oracle. We point out that this “no-challenge-decryption” condition can be formalized
in several different ways and the literature is not consistent, sometimes doing it one way,
sometimes another, and assuming it makes no difference. We show that the latter perception
is incorrect. It does make a difference, for the resulting notions are not equivalent. Specifi-
cally, we consider four notions corresponding to whether challenge-decryption is disallowed
in both phases of the adversary’s attack or just in the second, and, orthogonally, whether
the disallowance is “penalty” or “exclusion” based. We show that the notions are not all
equivalent for public-key encryption (PKE). We then show that, in contrast, they are equiv-
alent for key-encapsulation mechanisms (KEMs). Our work shows that subtle foundational
issues exist even with notions that are supposedly well-established and unambiguous, and
highlights the need to be careful and precise with regard to “minor” definitional “details.”

Keywords: Definitions, foundations, encryption, chosen-ciphertext attack.

1 Introduction

Cryptography is founded on definitions. Results in cryptography are meaningful, clear or use-
ful to the extent that this is true of the definitions they make and target. An unambiguous
interpretation of results requires clear and unambiguous definitions.

The pioneering work of Goldwasser and Micali [21] defined the IND-CPA (Indistinguisha-
bility under chosen-plaintext attack) notion of security for public-key encryption (PKE). Naor
and Yung [31] subsequently defined indistinguishability under non-adaptive chosen-ciphertext
attack, where the adversary is allowed access to a decryption oracle prior to seeing the challenge
ciphertext but not after. The notion now universally accepted as the “right” target is IND-CCA,
indistinguishability under adaptive chosen-ciphertext attack, where the adversary is allowed ac-
cess to the decryption oracle both before and after seeing the challenge ciphertext, but cannot
query the challenge ciphertext itself. The basic idea goes back to Rackoff and Simon [36], but
the form of the definition currently in use is from [4, 12]. It is now defined and targeted in
hundreds of papers.

There is a consensus, in the community, on what IND-CCA is supposed to mean, yet we see
it formalized in different ways in different places. Not only papers, but even textbooks [30, 20,
14, 24] have adopted differing formalisms, yet all seem to think they refer to the same notion.
This paper shows that for PKE they don’t. It goes on to show that for KEMs they do.
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1.1 The PKE case

We begin by recalling the definitional template. The underlying experiment picks a public key
pk and matching secret key sk , and then provides pk to the adversary A. The latter runs in two
phases in both of which is has access to an oracle for decryption under sk . It ends its first phase
by outputting a pair M0, M1 of messages. The experiment picks a challenge bit b at random,
encrypts Mb under pk , and returns the resulting challenge ciphertext C ∗ to A. The latter now
enters its second phase, which it ends by outputting a bit b′. We say that A wins if b = b′.
Security requires that the probability of winning minus 1/2 is negligible.

If A can query the challenge ciphertext C ∗ to its decryption oracle, it can easily win the
above game. The definition accordingly disallows such a challenge decryption query.

At first glance this “no-challenge-decryption” condition seems clear and unambiguous. A
closer look shows otherwise. We now discuss two issues or dimensions in the formalization and
see how this gives rise to four possible notions of IND-CCA that we will relate.

It is clear that we must disallow a challenge decryption query in the second phase of the at-
tack, but what about the first? To be more precise, let Sj denote the set of all decryption queries
made by A in phase j (j = 1, 2). Then we have two options: at the end of the experiment, when
we can evaluate this condition, either disallow C∗ ∈ S2 (denote this “S” for “second”) or disallow
C∗ ∈ S1 ∪ S2 (denote this “B” for “both”). The basic rationale for the no-challenge-decryption
condition, namely that if the adversary queries C∗ it wins trivially, holds true regardless of the
phase in which the query is made and thus supports either choice.

The existence of this choice having been pointed out, one’s first reaction may be that it does
not matter, meaning the two are equivalent. This turns out not to be true. Before we get there,
however, let us discuss another definitional issue. Namely, what exactly does “disallow” mean?
Again there are two options. The first option is to have the experiment, after the adversary
has completed, test whether C∗ is in an undesired set (S2 or S1 ∪ S2, depending on whether
we do “S” or “B”) and, if so, return false, meaning declaring the adversary to have lost. We
call this a penalty (“P”) style notion since the adversary is being penalized, a posteriori, for
its actions. In the literature however it is more common to not have the experiment impose a
penalty but just say, outside of the experiment, that the adversary is “not allowed” or just “may
not” make a challenge decryption query. But what exactly (meaning, formally) does this mean?
It seems to us that the natural interpretation, and the one intended by the authors, is that we
are quantifying over all (polynomial-time) adversaries that never make a challenge decryption
query, meaning have zero probability of doing so in the experiment. We refer to this as an
exclusion (“E”) style notion since certain adversaries are a priori excluded from consideration.

With two options (“B” or “S”) in the first dimension and another two (“P” or “E”) in the
second we obtain four notions. Figure 1 summarizes them. The first column shows the winning
condition for A, namely, the condition under which the experiment returns true. The second
column shows when A is valid, meaning we quantify only over (polynomial-time) adversaries
for which the validity condition holds with probability one in the experiment. See Section 3 for
formal definitions.

The left-hand side of Figure 2 summarizes the relations we show between the notions. An
implication IND-CCA-X → IND-CCA-Y means every PKE scheme that is IND-CCA-X secure is
also IND-CCA-Y secure. A separation IND-CCA-X 6→ IND-CCA-Y means we give an example of
a PKE scheme that is IND-CCA-X secure but not IND-CCA-Y secure. Only a minimal set of
relations is explicitly shown; others follow. For example, IND-CCA-BE 6→ IND-CCA-SE, since
otherwise we would contradict shown separations.

These results show that disallowing a challenge-decryption query in both phases results
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A wins if A is valid if

IND-CCA-SP (b = b′) ∧ (C∗ 6∈ S2)

IND-CCA-BP (b = b′) ∧ (C∗ 6∈ S1 ∪ S2)

IND-CCA-SE (b = b′) (C∗ 6∈ S2)

IND-CCA-BE (b = b′) (C∗ 6∈ S1 ∪ S2)

Figure 1: Summary of our IND-CCA notions for PKE.

in a strictly weaker notion than disallowing it only in the second phase, and this is true for
both penalty and exclusion style formulations. That is, IND-CCA-SP and IND-CCA-BP are not
equivalent, and also IND-CCA-SE and IND-CCA-BE are not equivalent. Another interesting fact
is that if the challenge decryption query is disallowed only in the second phase then it makes
no difference whether this is by penalty or exclusion (that is, IND-CCA-SE and IND-CCA-SP are
equivalent), but, in contrast if the challenge decryption query is disallowed in both phases, an
exclusion style formulation results in a strictly weaker notion than a penalty style formulation
(that is, IND-CCA-BE does not imply IND-CCA-BP). One of the conclusions from this is that
the “S” notions should be preferred, not only because they are stronger but also because the
penalty and exclusion style formulations are equivalent.

One might at first think that (contrary to our claim) IND-CCA-SP and IND-CCA-BP are
equivalent. Why? To explain, let us say that a PKE scheme is “smooth” if the number of
possible ciphertexts is large (super-polynomial) for any message. (See Section 5 for a more
precise definition.) Now reason as follows: first, any smooth IND-CCA-BP scheme is IND-CCA-
SP since the adversary cannot predict, hence query, the challenge ciphertext in the first phase;
second, even an IND-CPA scheme must be smooth, else we could break it by re-encrypting
the challenge messages until the challenge ciphertext is seen. What’s the catch? It is that
the second claim is false. As our proof of Theorem 3.1 shows, even an IND-CCA-BP (let alone
IND-CPA) scheme need not be smooth: “weak” messages, meaning ones with few corresponding
ciphertexts, can exist without contradicting IND-CCA-BP security as long as they are hard to
find without access to a decryption oracle.1

Our work was sparked by seeing variations in the formalization of the “no-challenge-decryption”
condition in the literature. For example, [4, 12, 18, 28, 38, 29, 37] define what in our taxonomy
is IND-CCA-SE. However, many works [10, 11, 19, 32, 33, 34, 40] simply have a phrase like “the
adversary is not allowed to query the challenge ciphertext to the decryption oracle.” On the
one hand, since no phase is indicated, this could be interpreted as IND-CCA-BE. On the other
hand, since the challenge ciphertext is not defined in the first phase, it could be interpreted as
IND-CCA-SE. But our results say that these notions are different.

Penalty-style formulations are rarer, but [2] defines IND-CCA-SP and [1] defines IND-CCA-BP.
(This definition is for HIBEs, but this gives PKE for hierarchies of depth 0.) The single-user
definition in [3] is IND-CCA-SE but the multi-user definition is in the BE style. Moving to
textbooks, Goldreich [20, Sec 5.4.1.1], Delfs and Knebel [14, Def 9.17] and Katz and Lindell [24,
Sec 10.6] define IND-CCA-SE while Menezes, Van Oorschot and Vanstone [30, Sec 8.1.1] seem to
define IND-CCA-BE.

1The first claim above —namely that IND-CCA-BP implies IND-CCA-SP for smooth schemes— is actually
true, and useful because “real” schemes are typically (unconditionally) smooth. Interestingly, IND-CCA-BE fails
to imply IND-CCA-SE even for smooth schemes, indicating a further weakness of exclusion-style formulations. See
Appendix 5 for more information.
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In order to have firm foundations —in particular a unique interpretation and common under-
standing of results— it is important to have definitional unity, meaning that different definitions
intending or claiming to represent the same notion should really do so. Our work is a step to
this end. Our work also highlights a general definitional issue that we feel needs to be addressed
with more care. Namely, in many instances one has a choice between formalizing something
in a penalty or exclusion style. One should take care to ascertain that the resulting notions
are equivalent, for as our results show this is not always true. Finally, we think our results are
an interesting illustration of how seemingly minor definitional elements affect the power of the
notion.

1.2 The KEM case

Cramer and Shoup [13] show that an IND-CCA PKE scheme can be obtained by combining an
IND-CCA KEM (Key Encapsulation Mechanism) with an IND-CCA DEM (Data Encapsulation
Algorithm). This has proved to be a powerful and useful paradigm, leading to increased interest
in KEMs [7, 15, 25, 26, 39]. When, in this light, we revisit the definition of IND-CCA for KEMs
we find that there arise the same issues regarding challenge decryption as in the PKE case. We
again obtain four notions that we denote as before, with the notion of [13], in our taxonomy,
being IND-CCA-SE. Our results resolving the relations among the notions are depicted on the
right-hand side of Figure 2. We see an interesting contrast with the PKE case of the left side of
the same figure, namely that in the KEM case the notions are all equivalent. Intuitively this is
true because in the KEM case the role of the encrypted “message” is played by a symmetric key
not under adversarial control. Our results make crucial use of smoothness: we show that IND-
CCA-BP implies IND-CCA-SP (unlike for PKE) by first showing that any IND-CCA-BP KEM is
smooth (unlike for PKE) and then showing that any smooth IND-CCA-BP KEM is IND-CCA-SP
(this was true also for PKE).

In addition we show that both the penalty and exclusion versions (IND-CCA-OP and IND-
CCA-OE) of a simple one-phase definition of IND-CCA for KEMs are equivalent to all the others,
simplifying the task of showing that specific KEMs are IND-CCA secure. IND-CCA-OE was
proposed by [26] who showed it is equivalent to IND-CCA-SP when the KEM encapsulation
algorithm induces a uniform distribution on the keyspace, an assumption we don’t make.

1.3 Extensions and related work

The notion of Naor and Yung [31] gives the adversary the decryption oracle only in the first
phase. This is sometimes called a non-adaptive attack and the notion has been denoted IND-
CCA-1. When we talk of IND-CCA in this paper, we mean under adaptive attack: all our notions
give the adversary the decryption oracle in both phases. It was shown in [4] that IND-CCA-1
is strictly weaker than IND-CCA, and this remains true regardless of the forms of IND-CCA we
define that one considers.

IND-CCA is often attributed to Rackoff and Simon [36]. They were indeed the first to consider
adaptive attacks, but they give the adversary access to the decryption oracle only in the second
phase —which, as shown by [34], is strictly weaker than giving access in both phases— and their
definition is only for random one bit messages. Dolev, Dwork and Naor [16] do not formally
define IND-CCA but their definition of non-malleability under CCA selects the “SE” option.
Definitions of IND-CCA of the form that is now common seem to begin with the concurrent 1998
works [4, 12].

Our definitions and results (including the proofs) for PKE extend also to private-key (i.e. sym-
metric) encryption, IBE (Identity-Based Encryption) and HIBE (Hierarchical IBE). That is, the
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IND-CCA-SP IND-CCA-BP

IND-CCA-SE IND-CCA-BE

/

3.1

3.2 /3.3

IND-CCA-SP IND-CCA-BP

IND-CCA-SE IND-CCA-BE

4.4

4.1

Figure 2: Relations between the various IND-CCA security notions for PKE schemes (left) and
KEMs (right). An arrow IND-CCA-X → IND-CCA-Y is an implication and a barred arrow IND-
CCA-X 6→ IND-CCA-Y is a separation. Dotted lines denote trivial implications. The numbers
next to the solid lines indicate the theorems establishing them.

same four notions again emerge and the relations are as shown on the left-hand-side of Figure 2.
In the (H)IBE case, most works [6, 27] define IND-CCA-SE but [5] defines IND-CCA-BE.

In the context of relaxed CCA security (RCCA security, [9, 22, 35]), a variant of the IND-CCA-
SE definition is employed. In the RCCA definition, the adversary gets a completely unrestricted
decryption oracle in the first phase. In the second phase, the adversary may ask for arbitrary
decryptions. However, if the decrypted message is one of the two adversarially chosen challenge
messages m0, m1, then the adversary simply gets a special answer “test” (or “invalid” in [22])
that indicates that either m0 or m1 is the plaintext. (This rule applies in particular to a
decryption of the challenge ciphertext.)

We stress that the RCCA security constitutes a weakening of the IND-CCA-SE definition that
is orthogonal to our notion of IND-CCA-BE. In particular, we consider different formalizations
that reflect the same intuitive definition (security under unrestricted chosen-ciphertext attacks),
while RCCA security captures a different intuition (re-randomizing the challenge ciphertext is
explicitly allowed).

The RCCA and IND-CCA security notions have been proven equivalent to realizing ideal
functionalities in the framework of Universal Composability [8]. In these proofs [9, 23], the
IND-CCA-SE variant of IND-CCA security was used. This is another a hint that the “S” notions
are the “right” notions to use.

2 Preliminaries

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If k ∈ N

then 1k denotes the string of k ones. If S is a set then s←R S denotes the operation of picking
an element s of S uniformly at random. Unless otherwise indicated, algorithms are randomized
and (strictly) polynomial time. By z ←R AO1,O2,...(x, y, . . .) we denote the operation of running
algorithm A with inputs x, y, . . . and access to oracles O1,O2, . . ., and letting z be the output.
An adversary is an algorithm or a tuple of algorithms.

The advantage of an adversary I in inverting a function f : {0, 1}∗ → {0, 1}∗ is defined for
k ∈ N as

Advow
f,I(k) = Pr[f(x) = f(y) : x←R {0, 1}

k ; y ←R I(1k, f(x))] .

We say that f is one-way if Advow
f,I(·) is negligible for all adversaries I. We say that f is injective

if for all k ∈ N and all x, y ∈ {0, 1}k, f(x) = f(y) implies x = y.
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Experiment Expind-cca-X
PKE,A (k)

(pk , sk)←R Kg(1k) ; S1, S2 ← ∅

(M0,M1,St)←R A
Dec1(·)
1 (1k, pk)

b←R {0, 1} ; C
∗ ←R Enc(pk ,Mb)

b′ ←R A
Dec2(·)
2 (C ∗,St)

Return:
SE, BE : (b = b′)
SP : (b = b′) ∧ (C∗ 6∈ S2)
BP : (b = b′) ∧ (C∗ 6∈ S1 ∪ S2)

Oracle Dec1(C )

S1 ← S1 ∪ {C}
return Dec(sk ,C )

Oracle Dec2(C )

S2 ← S2 ∪ {C}
return Dec(sk ,C )

Figure 3: Experiment Expind-cca-X
PKE,A (k) for X ∈ {SE,BE, SP,BP}. The experiments differ only

in how they compute their final Boolean ouput, which depends on X as shown.

3 Results for Public-Key Encryption

We begin with definitions.

Syntax. An asymmetric encryption scheme PKE = (Kg,Enc,Dec) is a triple of algorithms.
The key generation algorithm Kg takes a security parameter 1k and returns a pair (pk , sk) of
matching public and secret keys. The encryption algorithm Enc takes a public key pk and a
message M ∈ {0, 1}∗ to produce a ciphertext C . The deterministic decryption algorithm Dec

takes sk and ciphertext C to produce either a message M ∈ {0, 1}∗ or a special symbol ⊥ to
indicate that the ciphertext was invalid. The consistency requirement is that for all k ∈ N, for
all (pk , sk) which can be output by Kg(1k), for all M ∈ {0, 1}∗, and for all C that can be output
by Enc(pk ,M), we have that Dec(sk ,C ) = M .2

IND-CCA security. We first provide formal definitions and then explanations. An IND-
CCA adversary A = (A1,A2) is a pair of algorithms such that the output of A1 is always a
tuple (M0,M1,St) satisfying |M0| = |M1|. Let A be the class of all such adversaries. Let
X ∈ {SP,BP, SE,BE}. To an adversary A = (A1,A2) ∈ A, a PKE scheme PKE = (Kg,Enc,Dec)
and k ∈ N, we associate the experiment Expind-cca-X

PKE,A (k) of Figure 3. We define the advantage
of A as

Advind-cca-X
PKE,A (k) = 2Pr[Expind-cca-X

PKE,A (k)⇒ true]− 1 .

Let ASP
PKE

= ABP
PKE

= A be the class of all IND-CCA adversaries. Let ASE
PKE

be the class of all
A ∈ A such that for all k ∈ N, the probability that C∗ ∈ S2 in Expind-cca-SE

PKE,A (k) is 0. Let

ABE
PKE

be the class of all A ∈ A such that for all k ∈ N, the probability that C∗ ∈ S1 ∪ S2 in
Expind-cca-BE

PKE,A (k) is 0. We say that PKE is IND-CCA-X secure if Advind-cca-X
PKE,A (·) is negligible for

all A ∈ AX
PKE

.

Discussion. These notions reflect the different treatments of challenge decryption queries
along two dimensions. The first dimension is whether decryption of the challenge ciphertext is
disallowed in both (“B”) phases or only in the second (“S”) phase. The second dimension is
how, technically, to disallow this query. Here the first choice is that the experiment penalizes
(“P”) the adversary by returning “false” if it makes a disallowed query, and the second choice

2We note, however, that our results also hold with weaker forms of consistency. This includes the upcoming
results for the KEM case.
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(“E”) is that adversaries with non-zero probability of making the disallowed query are simply
not considered.

There is another option in the second dimension, namely to consider the class of adversaries
that have negligible (rather than zero) probability of making a query of the unallowed type. We
do not consider this since we have not found it defined or indicated in the literature. Indeed,
the intent of a typical phrase of the form “the adversary is not allowed to query the challenge
ciphertext to the decryption oracle” seems to be that such a query is never allowed. Had the
writers meant allowed only with negligible probability, one would have expected it precisely
stated as such.

Trivial implications. The trivial implications (dashed arrows) from Figure 2 should be clear from
the defnitions. Briefly, IND-CCA-SP implies IND-CCA-SE because if the probability that C∗ ∈ S2

is zero then the winning conditions (b = b′) and (b = b′)∧ (C∗ ∈ S2) are equivalent. The reason
for IND-CCA-BP implying IND-CCA-BE is analogous. IND-CCA-SP implies IND-CCA-BP because
the winning condition of the latter is more stringent than that of the former. IND-CCA-SE implies
IND-CCA-BE because ABE

PKE
⊆ ASE

PKE
.

IND-CCA-BP 6⇒ IND-CCA-SP. Theorem 3.1 below shows that for penalty-style notions, disal-
lowing a challenge-ciphertext query in both phases results in a notion strictly weaker than that
resulting from disallowing it only in the second phase. That this is also true for the exclusion-
style notions will follow by combining Theorems 3.1 and 3.2.

Theorem 3.1 [IND-CCA-BP 6⇒ IND-CCA-SP] Assume there exist injective one-way functions
and a scheme PKE which is IND-CCA-BP secure. Then there exists a scheme PKE which is
IND-CCA-BP secure but not IND-CCA-SP secure.

Proof: We want to design a scheme PKE = (Kg,Enc,Dec) which is IND-CCA-BP secure but not
IND-CCA-SP secure. That is, ability to query the challenge ciphertext in the first phase should
lead to an attack, but, when this is disallowed, the scheme should be secure. The intuition
is as follows. Suppose there was a special message Mweak and a special ciphertext Cweak such
that Enc(pk ,Mweak) always (meaning, with probability one) returns Cweak. Then an adversary
could output as its challenge messages M0 = Mweak and some M1 6= Mweak. If the challenge bit
is 0 then the challenge ciphertext C∗ must be Cweak, and otherwise (by consistency) must be
different from Cweak, so, given C∗ the adversary can always determine the challenge bit, and the
scheme is not IND-CCA-SP. The difficulty is that it is not IND-CCA-BP either. (In fact, it is not
even IND-CPA.) To make it IND-CCA-BP, we ensure that Mweak can only be found by querying
Cweak to the decryption oracle in the first phase. However, there is now a difficulty. Namely, the
encryption algorithm Enc needs to return Cweak given pk ,Mweak, meaning it must at some level
know Mweak. Yet the adversary, who is given pk , Cweak, and the description of Enc, must not
know Mweak. (Unless it queries Cweak to the decryption oracle.) To ensure this, we put in pk

an image of Mweak under an injective one-way function. Then neither pk nor Enc reveal Mweak,
but Enc can test whether a given input equals Mweak. We now proceed to the details.

Let f : {0, 1}∗ → {0, 1}∗ be an injective one-way function and assume that PKE = (Kg,Enc,Dec)
is IND-CCA-BP secure. Consider the scheme PKE = (Kg,Enc,Dec) whose constituent algorithms
are shown in Figure 4, where Nk is set to {1k}. The ciphertext Cweak from the above discussion
is (1, 1k). Now we want to claim that PKE is IND-CCA-BP secure but not IND-CCA-SP secure.
However, we first check that PKE is consistent. The reason we want to highlight this (usually
trivial) check is that it is the (only) place we use the assumption that f is injective.

Claim 1. PKE is consistent.
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Alg Kg(1k)
(pk , sk)←R Kg(k)
Mweak ←R {0, 1}

k

Y ← f(Mweak)

pk ← (pk , Y )

sk ← (sk ,Mweak)

Return (pk , sk)

Alg Enc(pk ,M)

Parse (pk , Y )← pk

If f(M) = Y then
w ←R Nk

C ← (1, w)
Else C ←R Enc(pk ,M)

C ← (0, C)

Return C

Alg Dec(sk , C)
Parse (sk ,Mweak)← sk

Parse (s,C )← C
If s = 0 then return Dec(sk ,C )
If s = 1 and C ∈ Nk then

return Mweak

Return ⊥

Figure 4: Counterexample scheme PKE for proofs of Theorems 3.1 and 3.3. In the first case
Nk = {1k} and in the second case Nk = {0, 1}k.

Proof. We have to show that Dec(sk ,Enc(pk ,M)) = M , always. If f(M) 6= Y where pk =
(pk , Y ), this follows from the consistency of PKE. So suppose f(M) = Y . In that case
Enc(pk ,M) returns C = (1, 1k) which is decrypted by Dec to Mweak. Since f is a injective,
we have that Mweak = M . ✷

Claim 2. PKE is not IND-CCA-SP secure.
Proof. Consider adversary A = (A1,A2) ∈ A

SP

PKE
that proceeds as follows. Given pk = (pk , Y ),

algorithm A1 queries Dec1(·) on ciphertext C = (1, 1k) to obtain Mweak. It picks M1 ←R

{0, 1}k \ {Mweak} and returns M0 = Mweak and M1 as the two challenge messages. A2 obtains
a challenge ciphertext C ∗ and returns b′ = 0 if C ∗ = (1, 1k) and b′ = 1, otherwise. We have
Advind-cca-SP

PKE,A
(k) = 1. Note that with probability 1/2, A queries the challenge ciphertext to

the decryption oracle in the first phase which is why this does not show PKE is IND-CCA-BP
insecure. ✷

Claim 3. PKE is IND-CCA-BP secure.
Proof. Given an adversary B = (B1,B2) ∈ A

BP

PKE
we build A = (A1,A2) ∈ A

BP
PKE

and an
adversary I against the one-wayness of f such that, for all k ∈ N,

Advind-cca-BP
PKE,B

(k) ≤ Advind-cca-BP
PKE,A (k) + 2Advow

f,I(k). (1)

We start by describing A = (A1,A2) in Figure 5. Here, A simulates the oracles of B using the
shown subroutines SDecj(·) (j = 1, 2). For B, this provides a perfect simulation of experiment
Expind-cca-BP

PKE,B
unless Mweak ∈ {M0,M1}. This motivates the definition of the following events.

Event Bd is that Mweak ∈ {M0,M1} (for the M0,M1 chosen by B1). Event Ask is that B1 asks
for the decryption of C = (1, 1k). We have

Pr
[

Expind-cca-BP
PKE,B

(k)⇒ true
]

= Pr
[

Expind-cca-BP
PKE,B

(k)⇒ true ∧ ¬Bd

]

+ Pr
[

Expind-cca-BP
PKE,B

(k)⇒ true ∧Bd

]

. (2)

The following takes care of the first summand and uses that A provides a good view for B unless
Bd occurs, and that the probability for Bd is the same in both experiments:

Pr
[

Expind-cca-BP
PKE,B

(k)⇒ true ∧ ¬Bd

]

= Pr
[

Expind-cca-BP
PKE,A (k)⇒ true ∧ ¬Bd

]

. (3)
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Alg A
Dec1(·)
1 (pk)

bad ← false ; T1, T2, D1, D2 ← ∅
Mweak ←R {0, 1}

k ; Y ← f(Mweak)

pk ← (pk , Y )

(M0,M1,St)←R B
SDec1(·)
1 (pk)

If Mweak ∈ {M0,M1} and (1, 1k) ∈ T1 then
bad ← true

M0,M1 ←R {0, 1}
k \D1

St ← (St , bad)
Return (M0,M1,St)

Alg A
Dec2(·)
2 (C ∗,St)

Parse (St , bad)← St

If bad = true then
b′ ←R {0, 1}
return b′

C
∗
← (0,C ∗)

b′ ←R B
SDec2(·)
2 (C

∗
,St)

Return b′

Sub SDecj(C)

Tj ← Tj ∪ {C}
Parse (s,C )← C
If s = 0 then

M ← Decj(C)
Dj ← Dj ∪ {M}
return M

If (s, C) = (1, 1k) then
Dj ← Dj ∪ {Mweak}
return Mweak

Return ⊥

Figure 5: Adversary A = (A1,A2) ∈ A
BP
PKE

for the proof of Claim 3.

To bound the second summand of (2), we start with

Pr
[

Expind-cca-BP
PKE,B

(k)⇒ true ∧Bd

]

≤ Pr [Bd ∧ ¬Ask ] + Pr
[

Expind-cca-BP
PKE,B

(k)⇒ true ∧Bd ∧Ask

]

. (4)

We design an adversary I against the one-wayness of f such that

Pr [Bd ∧ ¬Ask ] ≤ Advow
f,I(k). (5)

I gets Y = f(Mweak) for uniformly chosen Mweak ∈ {0, 1}
k and tries to compute Mweak. To this

end, I proceeds as follows:

Alg I(Y )

(pk , sk)←R Kg(1k) ; pk ← (pk , Y )

(M0,M1,St)←R B
SDec1(·)
1 (1k, pk)

If f(M0) = Y then return M0

If f(M1) = Y then return M1

Else return ⊥

Oracle SDec1(C)

Parse (b,C )← C
If b = 0 then return Dec(sk ,C )
Else return ⊥

Note that B1 has exactly the same view in experimentExpind-cca-BP
PKE,B

and in the simulation inside I

unless it asks for a decryption of (1, 1k). Also, I is successful in inverting f iff Mweak ∈ {M0,M1}.
Hence, Equation (5) is true.

Note that the probability of Bd∧Ask could be high, because nothing prevents B1 from making
the decryption query (1, 1k) to get Mweak and then setting either M0 or M1 to Mweak. However,
we note that if Bd ∧ Ask does occur, then B loses with probability 1/2 because C

∗
= (1, 1k)

with that probability. That is,

Pr
[

Expind-cca-BP
PKE,B

(k)⇒ true | Bd ∧Ask

]

≤ 1/2 (6)

On the other hand,

Pr
[

Expind-cca-BP
PKE,A (k)⇒ true | Bd ∧Ask

]

= 1/2 . (7)
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This is because if Bd∧Ask happens then A1 sets bad to true and A2 returns a random decision
b′. Here we also use that by consistency of the scheme, picking M0,M1 from {0, 1}

k \D1, ensures
that A1 never queries the challenge ciphertext to the decryption oracle in the first phase. Now
note that the probability of Bd∧Ask is the same in both experiments (because until Bd∧Ask

happens, both experiments proceed identically). Hence, from (6),(7), we get

Pr
[

Expind-cca-BP
PKE,B

(k)⇒ true ∧Bd ∧Ask

]

≤ Pr
[

Expind-cca-BP
PKE,A (k)⇒ true ∧Bd ∧Ask

]

.

Combining this with (4) and (5) yields

Pr
[

Expind-cca-BP
PKE,B

(k)⇒ true ∧Bd

]

≤ Pr
[

Expind-cca-BP
PKE,A (k)⇒ true ∧Bd

]

+Advow
f,I.

Combining this with (2) and (3), we finally get (1).

Remark. We stress that our adversary A against PKE’s IND-CCA-SP security in the proof of
Claim 2 does not query its decryption oracle after receiving the challenge ciphertext. Hence,
PKE is not even IND-CCA-1 secure. (Here IND-CCA-1 security is defined like IND-CCA-SE
security, except that the second stage A2 of the adversary does not get access to a decryption
oracle [31, 4].) Since any reasonable form of (full) IND-CCA security should imply IND-CCA-1
security, we view this as another indication that IND-CCA-SE security is the “right” definition
of IND-CCA security.

IND-CCA-SE ⇒ IND-CCA-SP. We already noted that IND-CCA-SP implies IND-CCA-SE. Theo-
rem 3.2 below says that the converse is true as well, meaning that in the case where decryption
of the challenge ciphertext is disallowed only in the second phase, the exclusion and penalty style
notions are equivalent. (We will see below that this is not true in the case where the decryption
of the challenge ciphertext is disallowed in both phases.) Theorem 3.2 is in fact understood in
folklore but we state and prove it for completeness.

Theorem 3.2 [IND-CCA-SE ⇒ IND-CCA-SP] If PKE is IND-CCA-SE secure then PKE is IND-
CCA-SP secure.

Proof: Given an adversary A ∈ ASP
PKE

against IND-CCA-SP security of PKE we show how to
build an advarsary B ∈ ASE

PKE
against IND-CCA-SE security of PKE such that for all k ∈ N,

Advind-cca-SP
PKE,A (k) ≤ Advind-cca-SE

PKE,B (k). (8)

We let B1 = A1. Algorithm B2, given C∗,St , runs A2 on C∗,St , and finally returns whatever
A2 returns. B2 responds to A2’s oracle queries as follows. When A2 makes a query C, if
C 6= C∗, B2 responds with its own decryption oracle, else it returns ⊥ to A2. This ensures
that in Expind-cca-SE

PKE,B , we have C ∗ 6∈ S2 with probability 1. Hence B ∈ ASE
PKE

. Furthermore,
Equation (8) holds since a decryption query satisfying C = C ∗ directly implies that A loses.

IND-CCA-BE 6⇒ IND-CCA-BP. Our final separation shows that in the case where decryption of
the challenge ciphertext is disallowed in both phases, the exclusion and penalty style notions
are not equivalent. (This is in contrast to the case where decryption of the challenge ciphertext
is disallowed only in the second phase, as noted above.)

10



Experiment Expind-cca-X
KEM,A (k)

(pk , sk)←R Kg(k) ; S1, S2 ← ∅

St ←R A
Dec1(·)
1 (pk)

(C ∗,K∗1 )←R Enc(pk) ; K∗0 ←R K(k)

b←R {0, 1} ; b
′ ←R A

Dec2(·)
2 (C ∗,K∗b ,St)

Return:
SE, BE : (b = b′)
SP : (b = b′) ∧ (C∗ 6∈ S2)
BP : (b = b′) ∧ (C∗ 6∈ S1 ∪ S2)

Oracle Dec1(C )

S1 ← S1 ∪ {C}
return Dec(sk ,C )

Oracle Dec2(C )

S2 ← S2 ∪ {C}
return Dec(sk ,C )

Figure 6: Experiment Expind-cca-X
KEM,A (k), for X ∈ {SE,BE, SP,BP}.

Theorem 3.3 [IND-CCA-BE 6⇒ IND-CCA-BP] Assume there exist injective one-way functions
and a scheme PKE which is IND-CCA-BE secure. Then there exists a scheme PKE which is
IND-CCA-BE secure but not secure in the sense of IND-CCA-BP.

Proof: Let f : {0, 1}∗ → {0, 1}∗ be an injective one-way function and assume that PKE =
(Kg,Enc,Dec) is IND-CCA-BE secure. Consider the scheme PKE = (Kg,Enc,Dec) of Figure 4
with Nk = {0, 1}k. First we show that PKE is not IND-CCA-BP secure. Adversary A = (A1,A2)
against PKE proceeds as follows. Given pk = (pk , Y ), adversary A1 queriesDec1(·) on ciphertext
(1, 1k) to obtainMweak. It picksM1 ←R {0, 1}

k\{Mweak} and returnsM0 = Mweak andM1 as the
two challenge messages to the experiment. A2 obtains a challenge ciphertext C

∗
which is parsed

as (s, C). It returns b′ = 0 if s = 1, and b′ = 1 otherwise. Adversary A wins with probability 1
as long as C

∗
6∈ S1 which happens with probability 1− 2−k. Hence Advind-cca-BP

PKE,A
(k) = 1− 2−k.

Note that the above adversary A is not contained in ABE
PKE

since, with probability 2−k, we have
C
∗
∈ S1. Indeed, we can show that PKE is IND-CCA-BE secure. The idea is again that an

adversary needs to use Mweak as one of the challenge messages in order to win. However, an
adversary from ABE

PKE
using Mweak as one of the challenge messages can never make a decryption

query C of the form (1,C ) in the first phase, since C
∗
= (1,C ) with non-zero probability 2−k/2.

Hence, Mweak remains hidden through the one-way function. Details are similar to the proof of
Claim 3 and omitted here.

4 Results for Key Encapsulation Schemes

Syntax. A keyspace K is a map that associates to any k ∈ N a finite set K(k) ⊆ {0, 1}∗ of
strings. The elements of K(k) are called keys, and it is required that |K(k)| ≥ 2 for all k ∈ N.
A key-encapsulation mechanism (cf. [13]) KEM = (Kg,Enc,Dec) over K is a triple of algorithms.
The key generation algorithm Kg takes a security parameter 1k and returns a pair (pk , sk) of
matching public and secret keys. The encapsulation algorithm Enc takes pk and produces a
key K ∈ K(k) together with an encapsulated ciphertext C . The deterministic decapsulation
algorithm Dec takes sk and C to produce either a key K ∈ K(k) or a special symbol ⊥ to
indicate that the ciphertext was invalid. The consistency requirement is that for all k ∈ N, for
all (pk , sk) which can be output by Kg(1k) and for all (C ,K) that can be output by Enc(pk),
we have that Dec(sk ,C ) = K.

11



Experiment Expind-cca-X
KEM,A (k)

(pk , sk)←R Kg(k) ; S ← ∅
(C ∗,K∗1 )←R Enc(pk) ; K∗0 ←R K(k)

b←R {0, 1} ; b
′ ←R ADec(·)(pk ,C ∗,K∗b )

Return:
OE : (b = b′)
OP : (b = b′) ∧ (C∗ 6∈ S)

Oracle Dec(C )

S ← S ∪ {C}
return Dec(sk ,C )

Figure 7: One-phase experiment Expind-cca-X
KEM,A (k), for X ∈ {OE,OP}.

IND-CCA security. A KEM IND-CCA adversary A = (A1,A2) is a pair of algorithms. Let
B be the class of all such adversaries. Let X ∈ {SP,BP, SE,BE}. To an adversary A = (A1,A2)
and a KEM scheme KEM, we associate the experiment Expind-cca-X

KEM,A (k) in Figure 6. We define
the advantage of A in the experiment as

Advind-cca-X
KEM,A (k) = 2Pr[Expind-cca-X

KEM,A (k)⇒ true]− 1 .

Let BSP
KEM

= BBP
KEM

= B be the class of all IND-CCA adversaries. Let BSE
KEM

be the class of all
A ∈ B such that for all k ∈ N, the probability that C∗ ∈ S2 in Expind-cca-SE

KEM,A (k) is 0. Let

BBE
KEM

be the class of all A ∈ B such that for all k ∈ N, the probability that C∗ ∈ S1 ∪ S2 in
Expind-cca-BE

KEM,A (k) is 0. We say that KEM is IND-CCA-X secure if Advind-cca-X
KEM,A (·) is negligible for

all A ∈ BX
KEM

.

We also consider the following simpler one-phase notions. A one-phase KEM IND-CCA
adversary A consists of a single algorithm. Let X ∈ {OP,OE}. To an adversary A and KEM, we
associate the one-phase experiment Expind-cca-X

KEM,A (k) in Figure 7. We define the advantage of A

as above. Let BOP
KEM

be the class of all one-phase KEM IND-CCA adversaries. Let BOE
KEM

be the
class of all A ∈ BOP

KEM
such that for all k ∈ N, the probability that C∗ ∈ S in Expind-cca-OE

KEM,A (k)

is 0. We say that KEM is IND-CCA-X secure if Advind-cca-X
KEM,A (·) is a negligible function for all

A ∈ BX
KEM

.

Smoothness. For k ∈ N we let

SmthKEM(k) = E

[

max
C∈{0,1}∗

Pr
(K,C ′)←REnc(pk)

[C ′ = C ]

]

where the expected value is taken over all (pk , sk) ←R Kg(k). We refer to SmthKEM(·) as the
smoothness of KEM and say that KEM is smooth if SmthKEM(·) is negliglible. The notion of
a smooth KEM scheme will play a crucial role in the proof of Theorem 4.4 and may be of
independent interest.3

Results. Figure 8 depicts our results, which show that all six notions of IND-CCA-security for
KEMs are equivalent. The equivalences of the right-hand-side of Figure 2 are a consequence.
The trivial implications (dashed arrows) of Figure 8 should be clear from the definitions. We
now prove the two other implications.

IND-CCA-OE ⇒ IND-CCA-BP. Theorem 4.1 below shows that security under the one-phase

3In fact, Fujisaki and Okamoto used essentially the same notion (called γ-uniformity in their work) in their
result [18]; the main difference to our notion is the technicality that they quantify over all (pk , sk), where we only
consider the expected value over (pk , sk).
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IND-CCA-SP IND-CCA-BP IND-CCA-OP

IND-CCA-SE IND-CCA-BE IND-CCA-OE

4.4

4.1

Figure 8: Relations between an expanded set of IND-CCA security notions for KEMs. The dotted
lines are trivial implications, and the numbers annotating the solid line implications indicate
the theorems establishing them.

exclusion-style notion implies security under the two-phase penalty-style notion that disallows
challenge-decryption in both phases.

Theorem 4.1 [IND-CCA-OE⇒ IND-CCA-BP] If KEM is IND-CCA-OE secure then KEM is IND-
CCA-BP secure.

Proof: Let B = (B1,B2) ∈ B
BP
KEM

. We build an adversary A ∈ BOE
KEM

such that for all k ∈ N,

Advind-cca-BP
KEM,B (k) ≤ Advind-cca-OE

KEM,A (k) . (9)

A obtains (1k, pk , C∗,K∗b ) and runs B1 on (1k, pk) and inputs St . Next, A runs B2 on input
(St , C∗,K∗b ) and outputs whatever B2 returns. During the executions, A needs to answer B1

and B2’s decapsulation queries. Let C be such a decapsulation query made by B1 or B2. If
C 6= C∗ then A answers using its own decapsulation oracle. If C = C∗ is queried, then A aborts.
This implies Equation (9) since a successful adversary B ∈ BBP

KEM
is obliged not to submit C∗

to the decapsulation oracle at any time. Furthermore, by construction, A ∈ BOE
KEM

which proves
the theorem.

IND-CCA-BP ⇒ IND-CCA-SP. Theorem 4.4 below shows that for penalty-based notions allowing
or disallowing a challenge-ciphertext query in the first phase does not make a difference. First,
the following useful lemma shows that for smooth KEMs, IND-CCA-BP security and IND-CCA-SP
security are indeed equivalent.

Lemma 4.2 If KEM is smooth and IND-CCA-BP secure then it is IND-CCA-SP secure.

Proof: Given an adversary A = (A1,A2) ∈ B
SP
KEM

= BBP
KEM

we show that for all k ∈ N,

Advind-cca-SP
KEM,A (k) ≤ Advind-cca-BP

KEM,A (k) +Q1(k) · SmthKEM(k), (10)

where Q1(k) is a polynomial upper bound on the number of queries that A1 makes. Details are
similar to the proof of Theorem 5.1 and omitted here.

Next we show that for KEM schemes IND-CCA-BP security implies smoothness. This is in
contrast to PKE schemes where the counterexample PKE from Figure 4 shows a smooth PKE
scheme which is not IND-CCA-BP secure.

Lemma 4.3 If KEM is IND-CCA-BP secure, then it is smooth.

13



Proof: We show that there exists an adversary B = (B1,B2) ∈ B
BP
KEM

such that for all k ∈ N,

Advind-cca-BP
KEM,B (k) ≥

1

2
· Smth2

KEM(k). (11)

Adversary B1 obtains 1k, pk and returns St = pk . Adversary B2 obtains (pk , C∗,K∗) and
proceeds as follows. It picks random (K ′,C ′)←R Enc(pk). If C ∗ 6= C ′ then B2 picks a random
bit b′ and returns it. If C ∗ = C ′ then B2 returns b′ = 1 if K ′ = K∗ and b′ = 0, otherwise.

We now turn to the analysis of B. For any pk and C ∈ {0, 1}∗ let

ν(pk , C) = Pr
(K̃,C̃ )←REnc(pk)

[C̃ = C]

Ley Cmax(pk) be such that ν(pk , Cmax(pk)) ≥ ν(pk , C) for all C ∈ {0, 1}∗. We define Gd as the
event that C ′ = Cmax(pk) and C∗ = Cmax(pk) in Expind-cca-BP

KEM,B (k). Assume Gd has happened
and hence C∗ = C ′. If b = 1 then B wins with probability 1 since (by consistency) K∗ = K ′. If
b = 0 then B only loses if the two keys K ′ and K∗ collide. Since the experiment picks K∗ = K∗0
uniformly distributed from K(k) this happens with probability 1/|K(k)| ≤ 1/2.

Pr[b = b′ | Gd] =
1

2
· (Pr[b = b′ | Gd ∧ b = 0] + Pr[b = b′ | Gd ∧ b = 1]) ≥

1

2
(1 + 1−

1

2
) =

3

4
.

On the other hand, Pr[b = b′ | ¬Gd] ≥ 1/2 as in both cases, C ′ = C∗ and C ′ 6= C∗, we have
Pr[b = b′ | ¬Gd] ≥ 1/2. Since B never queries the decapsulation oracle we have

Advind-cca-BP
KEM,B (k) = 2Pr[Expind-cca-BP

KEM,B (k)⇒ true]− 1 = 2Pr[b = b′]− 1

= 2(Pr[b = b′ | Gd] · Pr[Gd] + Pr[b = b′ | ¬Gd] · (1− Pr[Gd]))− 1

≥
1

2
· Pr[Gd]

It remains to bound Pr[Gd]. To this end let

X(pk) = Pr
(K,C)←REnc(pk)

[C = Cmax(pk)] .

Regard X as a random variable over the choice of pk given by (pk , sk)←R Kg(1k). Then, taking
the expectation over the choice of (pk , sk) we have E [X ] ≥ SmthKEM(k) so

Pr[Gd] = E
[

X2
]

≥ E [X ]2 ≥ Smth2
KEM(k)

due to Jensen’s inequality. This yields Equation (11) and concludes the proof of the claim.

The preceding two lemmas can be combined to show our main result for KEMs.

Theorem 4.4 [IND-CCA-BP ⇒ IND-CCA-SP] If KEM is IND-CCA-BP secure then KEM is IND-
CCA-SP secure.

Proof: Combining Lemma 4.2 and Lemma 4.3, we get that there exists an adversary B ∈ ABP
KEM

(from Lemma 4.3), such that for any given adversary A ∈ ASP
KEM

= ABP
KEM

and any k ∈ N, we
have

Advind-cca-SP
KEM,A (k) ≤ Advind-cca-BP

KEM,A (k) +Q1(k) · SmthKEM(k)

≤ Advind-cca-BP
KEM,A (k) +Q1(k) ·

√

2Advind-cca-BP
KEM,B (k), (12)

where Q1(k) is a polynomial upper bound on the number of decryption queries that A makes.
Since both Advind-cca-BP

KEM,A (k) and Advind-cca-BP
KEM,B (k) are negligible by assumption, this proves the

theorem.
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IND-CCA-SP IND-CCA-BP

IND-CCA-SE IND-CCA-BE

5.1

3.2

/

5.2

Figure 9: Implications and separations between the various IND-CCA security notions for PKE
schemes with smooth ciphertexts.

Remark 4.5 The reduction of Theorem 4.4 expressed by Equation (12) is not tight: in general
the smoothness of a KEM can only be bounded by the square root of the IND-CCA-BP advantage.
However, nearly all practical KEM scheme are unconditionally smooth, i.e. SmthKEM(k) =
O(2−k). For example, this is true for Diffie-Hellman based schemes. In this case the reduction
is tight, i.e. it only loses an additive factor of Q1(k)/2

k.

5 Relations for smooth PKE schemes

We mentioned earlier some intuition for why one might think that disallowing decryption of
the challenge ciphertext in both phases is equivalent to disallowing it only in the second phase,
namely that, even for IND-CPA schemes, there must be, for every message, a large number
of corresponding ciphertexts, and hence an adversary would be unable to predict (and hence
query) the challenge ciphertext in the first phase. The counter-example of Theorem 3.1 shows
this intuition is false in general; in the scheme PKE we built there, there is a message, namely
Mweak, encryption of which can result in just one ciphertext, and yet the scheme is IND-CCA-
BP (and hence IND-CPA) secure but not IND-CCA-SP secure. However, we now claim that
the basic intuition mentioned above is still right in the sense that if indeed, for every message,
there is a large number of corresponding ciphertexts —we will call this property smoothness—
then indeed IND-CCA-BP implies IND-CCA-SP. Where the intuition went wrong was in thinking
smoothness is implied by security properties like IND-CPA or IND-CCA-BP. (The scheme of
Theorem 3.1 shows it is not.) Interestingly, we will however see that IND-CCA-BE and IND-
CCA-SE are not equivalent even for smooth schemes, indicating the weakness of exclusion-based
definitions. To detail all this we now define smoothness formally. For any k ∈ N and any scheme
PKE = (Kg,Enc,Dec), we let

SmthPKE(k) = E

[

max
M∈{0,1}∗,C∈{0,1}∗

Pr
C∗←REnc(pk ,M)

[C = C∗]

]

where the expected value is taken over all (pk , sk) ←R Kg(k). We refer to SmthPKE(k) as the
smoothness of PKE and say that PKE is smooth if SmthPKE(·) is negliglible.

Smooth practical schemes include the ElGamal scheme [17] and the Cramer-Shoup scheme [12].
For these schemes, SmthPKE(k) ≤ 2−k. On the other hand, the scheme PKE from Theorem 3.1
is not smooth: For any (pk , sk), for the message Mweak and the ciphertext C = (1, 1) we have
Pr[C = Enc(pk ,Mweak)] = 1 so Smth

PKE
(k) = 1. The relations between the different IND-CCA

notions for PKE schemes with smooth ciphertexts are summarized in Figure 9. The difference
between this and Figure 2 is that IND-CCA-BP now implies IND-CCA-SP.
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Theorem 5.1 If the scheme PKE is IND-CCA-BP secure and smooth, then it is also IND-CCA-SP
secure.

Proof: Given an adversary A = (A1,A2) ∈ A
SP
PKE

= ABP
PKE

we show that for all k ∈ N,

Advind-cca-SP
PKE,A (k) ≤ Advind-cca-BP

PKE,A (k) + 2Q1(k) · SmthPKE(k), (13)

where Q1(k) is a polynomial upper bound on the number of decryption queries of A1.

We define the event Bd in Expind-cca-BP
PKE,A to hold when C ∗ ∈ S1. Then

Advind-cca-SP
PKE,A (k) ≤ Advind-cca-BP

PKE,A (k) + Pr[Bd] . (14)

On the other hand we have Pr[Bd] ≤ Q1(k)·SmthPKE(k) because for any given first phase query
C , the smoothness property of PKE guarantees that Pr [C = C ∗ ] ≤ SmthPKE(k). Substituting
into (14) yields (13), and thus the claimed statement.

However, Theorem 5.2 below shows that, even for smooth schemes, the equivalence between
allowing challenge decryption queries in both or just the second phase does not carry over to
the case of exclusion-based definitions.

Theorem 5.2 [IND-CCA-BE 6⇒ IND-CCA-SE] Assume there exist injective one-way functions
and a smooth scheme PKE which is IND-CCA-BE secure. Then there exists a smooth scheme
PKE which is IND-CCA-BE secure but not IND-CCA-SE secure.

Proof: Assume PKE is IND-CCA-BE secure and smooth. We use the IND-CCA-BE secure PKE
scheme PKE from the the proof of Theorem 3.3 (Figure 4 with Nk = {0, 1}k). Note that
Smth

PKE
(k) ≤ SmthPKE(k) + 2−k and hence PKE is smooth.

Consider the adversary A = (A1,A2) used in the proof of Theorem 3.3 to attack IND-CCA-BP
security of the scheme. Since A2 never queries the decryption oracle we have that A ∈ ASE

PKE
.

Furthermore, A wins with probability 1, always, and hence PKE is not IND-CCA-SE secure.
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