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Abstract

In hybrid public key encryption (PKE), first a key encapsulation mecha-
nism (KEM) is used to fix a random session key that is then fed into a highly
efficient data encapsulation mechanism (DEM) to encrypt the actual mes-
sage. A well-known composition theorem states that if both the KEM and
the DEM have a high enough level of security (i.e. security against chosen-
ciphertext attacks), then so does the hybrid PKE scheme. It is not known if
these strong security requirements on the KEM and DEM are also necessary,
nor if such general composition theorems exist for weaker levels of security.

Using six different security notions for KEMs, ten for DEMs, and six for
PKE schemes, we completely characterize in this work which combinations
lead to a secure hybrid PKE scheme (by proving a composition theorem) and
which do not (by providing counterexamples). Furthermore, as an indepen-
dent result, we revisit and extend prior work on the relations among security
notions for KEMs and DEMs.

Keywords:
Hybrid public key encryption, KEM/DEM paradigm, indistinguishability,
non-malleability

1. Introduction

Public key encryption (PKE) schemes (in contrast to symmetric ones)
usually have restricted message spaces, meaning that each ciphertext can hide
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only a limited number of plaintext bits. This greatly limits their application
since in practice one typically wants to efficiently encrypt arbitrary amounts
of data. One way of solving this problem is by using a hybrid encryption
scheme consisting of an (asymmetric) public-key part to encrypt a key plus a
(symmetric) secret-key part to encrypt the actual data. For the first part one
uses a key encapsulation mechanism (KEM) to produce a random symmetric
key K together with a ciphertext. For the second part this symmetric key K
is then used to encrypt the data using a highly efficient data encapsulation
mechanism (DEM), such as one based on AES. This popular approach is
often referred to as the “KEM/DEM paradigm” and was first formalized by
Cramer and Shoup [28, 11].

This KEM/DEM paradigm is a simple way of constructing efficient and
practical public key encryption schemes, and so has received a lot of atten-
tion in literature. It is incorporated in many new standards and recommen-
dations for encryption (see [29, 25, 12], for example) and many KEMs have
been proposed in the literature ([27, 28, 11, 13, 8, 21] and others). A natural
question when dealing with this paradigm is how the security of the indi-
vidual KEM and DEM parts relates to the security of the resulting hybrid
public key encryption scheme. This question is quite broad since there are a
lot of different security notions for the three components of the paradigm to
consider. As an example, the strongest security notion one usually consid-
ers is denoted as indistinguishability under chosen ciphertext attacks (IND-
CCA2) [26]. Cramer and Shoup [11] already proved that chosen-ciphertext
security for the KEM and the DEM part is a sufficient condition to obtain
a chosen-ciphertext secure hybrid PKE scheme. The first natural question
is if one can relax the general security requirements made to the KEM or
DEM part and nevertheless obtain a chosen-ciphertext secure hybrid PKE
scheme. This question is in particular motivated by the hybrid encryption
scheme by Kurosawa and Desmedt [23, 1] which is chosen-ciphertext secure
as a hybrid PKE scheme whereas its KEM part alone was shown not to be
chosen-ciphertext secure [10]. A more general problem is to study which of
the standard/natural security levels of the KEM and DEM parts are enough,
and which are not, to obtain a secure hybrid PKE scheme.

1.1. Overview of our main contributions

The main result of this paper is to solve the above open problem. We
study the conditions that the KEM and the DEM must satisfy in order
to lead to a secure hybrid PKE scheme. Our characterization is complete
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with respect to the considered security notions for KEMs, DEMs, and PKE
schemes (that will be introduced in the next subsection) and the hierarchies
implied by these notions.1 For fixed security levels of the KEM and the DEM
we show which security level for the hybrid PKE scheme can be guaranteed
(by proving a corresponding hybrid composition theorem) and which cannot
(by presenting a concrete counterexample).

To prove our results, we can in some places make use of established tech-
niques [3, 17], whereas in other cases we need to introduce new proof ma-
chinery.

1.2. Security notions for KEMs, DEMs, and PKE schemes

PKE Security Notions. For PKE schemes we consider the six standard
notions of {NM, IND}-{CPA,CCA1,CCA2} which were classified in [3].

KEM Security Notions. For KEMs, besides the straightforward indistin-
guishability based security notions, we consider the notion of non-malleability
(NM) that was proposed in a paper by Nagao, Manabe, and Okamoto [24].
Our six considered notions for KEMs are therefore

{NM, IND} − {CPA,CCA1,CCA2}.

The relations between the above notions are the same as in the PKE case
(with similar proofs to those in [3]).

DEM Security Notions. For DEMs we consider the standard notions
of {NM, IND}-{CPA,CCA1,CCA2}. Furthermore, we add the two attack
forms of one-time (OT) and one-time chosen-ciphertext (OTCCA) security.
Adding these new notions (that originate from Cramer and Shoup [11] and do
not give an adversary access to an encryption oracle), which we will see later,
is motivated by the hybrid PKE approach. The ten considered notions for
DEMs are thus {NM, IND}-{OT,OTCCA,CPA,CCA1,CCA2}. Compared
to [17] we use a different (and in our opinion more natural) security defini-
tion of NM for DEMs. (We do so to avoid intuitively completely insecure
schemes which are still non-malleable, see Section 2.3 for a discussion.) As
a consequence, we obtain a DEM hierarchy (Figure 3 in Section 2.3) that is

1We do consider established security notions for KEMs, DEMs, and PKE schemes such
as those from [3]. We do not consider, in particular, the notion of IND-CCCA [16], which is
tailored towards achieving secure hybrid encryption with one specific type of construction.
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very different from that established in [17]. In fact, the characterization of
the relations among the {CPA,CCA1,CCA2} notions is exactly the same as
for the PKE case established in [3]. We think that this new characterization
may be of independent interest.

Why consider non-malleability? While considering IND type secu-
rity notions for KEMs, DEMs, and PKE schemes is straightforward, it may
seem less interesting to consider NM type security notions for them. For the
case of PKE and DEM we refer to [14, 5, 3] and [17] for a motivation. We
now motivate NM security for KEMs. First of all, it is a natural theoretical
question in the hybrid setting whether it is possible to build NM hybrid en-
cryption from NM KEMs and DEMs. It is known that NM-CPA secure PKE
schemes are easier to construct than IND-CCA2 secure ones [9] so in the hy-
brid setting we can also hope to be able to construct more efficient NM-CPA
secure KEMs. Furthermore, and maybe more interestingly, non-malleability
for KEMs also seems to be a natural security notion when considering so
called related-key attacks [22, 6] on DEMs. In related-key attacks, a DEM
is attacked by observing encryptions under “meaningfully related keys” and
in the past many popular cryptographic ciphers were successfully broken by
such attacks (e.g., [20, 19, 7]). For hybrid encryption, NM security for KEMs
exactly prevents such related-key attacks on the DEM part.

1.3. (In)Sufficient Conditions for Hybrid Encryption

We show in Figure 1 which conditions on the KEM and the DEM lead to
a hybrid PKE scheme with a certain level of security, and which do not. The
symbol “≥” is used for positive implications, meaning that any combination
of a KEM and a DEM with the stated levels of security leads to a hybrid
PKE scheme with the level of security stated after the symbol “≥”. On
the other hand, the symbol “<” is used for negative results, meaning that
there exists some combination of a KEM and a DEM satisfying the stated
security notions such that the resulting hybrid PKE scheme does not satisfy
the security notion stated after the symbol “<”. (Usually, these constructions
will require some mild complexity assumptions, e.g., the existence of a secure
KEM in the first place.)

In the table there are eight key results, those with a number attached
in brackets, which refers to the theorem where we prove the corresponding
result. We deduce the rest of our results from these by using the security
hierarchies of KEMs, DEMs and PKE schemes, that is, the relations between
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DEM IND-OT NM-OT IND-OTCCA
IND-CPA NM-CPA IND-CCA2

KEM IND-CCA1 NM-CCA1

IND-CPA ≥ IND-CPA (3.1) ≥ IND-CPA ≥ IND-CPA
< IND-CCA1 < IND-CCA1 < IND-CCA1
< NM-CPA < NM-CPA < NM-CPA

NM-CPA ≥ IND-CPA ≥ NM-CPA (3.3) ≥ NM-CPA
< IND-CCA1 < IND-CCA1 < IND-CCA1 (4.2)
< NM-CPA < IND-CCA1 < IND-CCA1 (4.2)

IND-CCA1 ≥ IND-CCA1 (3.1) ≥ IND-CCA1 ≥ IND-CCA1
< NM-CPA < NM-CPA < NM-CPA (4.1)

NM-CCA1 ≥ IND-CCA1 ≥ NM-CCA1 (3.2) ≥ NM-CCA1
< NM-CPA < IND-CCA2 < IND-CCA2 (4.5)

IND-CCA2 ≥ IND-CCA1 ≥ NM-CCA1 ≥ IND-CCA2 [11]
< NM-CPA (4.3) < IND-CCA2 (4.4)

Figure 1: Sufficient and necessary conditions for hybrid encryption. The results are given
in set-notation: all positive results hold with respect to the weakest possible combination
of KEM/DEM in the set, whereas negative results hold with respect to the strongest
combination. For discussion on how the key results propagate in this diagram, consult the
discussion in the text and Figures 2 and 3.
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the different security notions for each of these primitives (that are summa-
rized in Figures 2 and 3, respectively). Here positive results propagate to the
right and down, whereas negative results propagate to the top and left.

We now turn to a discussion of our results from Figure 1. The first
remarkable fact is that it is possible to group notions for DEMs that achieve
the same security level for the resulting hybrid scheme, even though the
primitives themselves can be separated. For example, with an IND-OT secure
DEM one can always reach the same level of security as with an IND-CCA1
DEM.

Extending [11], our main positive result is that an X-Y secure KEM in
combination with an X-Y secure DEM also yields an X-Y secure hybrid
scheme (Theorems 3.1, 3.2 and 3.3). Furthermore, an IND-CCA1 KEM and
an IND-OT DEM already yield an IND-CCA1 hybrid scheme (Theorem 3.1);
a NM-CCA1 KEM plus a NM-OT DEM imply a NM-CCA1 hybrid scheme
(Theorem 3.2).

Our table also shows that the sufficient conditions on the KEM and the
DEM in the composition theorem from [11] are also necessary: an IND-CCA2
secure hybrid scheme can only be guaranteed if both the KEM and the DEM
have the highest considered security levels (that is, IND-CCA2 for KEM
and IND-{OTCCA,CCA2} for DEM). Any attempt to weaken the KEM to
IND-CCA1/NM-CCA1 or the DEM to NM-CCA1 may yield a hybrid PKE
scheme that is no longer IND-CCA2 (Theorems 4.1 / 4.5 and Theorem 4.4,
respectively). Furthermore, even the strongest possible KEM in combination
with a weak DEM (or vice-versa) only provides a relatively weak hybrid PKE
scheme (Theorems 4.3 and 4.2). We stress that our negative results also hold
in combination with DEM ciphertext integrity INT-CTXT [18, 4]. Note that
IND-CCA2 plus INT-CTXT (also denoted as authenticated encryption) is
strictly stronger than IND-CCA2 [4].

Our characterization from Figure 1 is complete with respect to all stan-
dard security notions for KEM, DEM, and PKE. We stress, on the other
hand, that different, less standard security notions for KEMs/DEMs can
lead to interesting results. For instance, [16] considers a new security no-
tion for KEMs called “constrained chosen-ciphertext (IND-CCCA) security.”
IND-CCCA security is a proper relaxation of IND-CCA2 security for KEMs.
However, [16] proves that, when combined with a suitably secure DEM, it
allows to construct fully IND-CCA2 secure PKE schemes. This paper only
considers more established security notions such as CPA, CCA1, and CCA2
security.
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For proving our results, we use new as well as established techniques:
for instance, the proof of Theorem 4.3 basically transports a counterexample
used in [3] to separate two security notions for public key encryption to the
hybrid setting. Conversely, Theorems 4.2 and 4.5 use a new DEM modifi-
cation which introduces new, “weak” DEM keys. This does not harm the
stand-alone security of the DEM in any way, but only makes sense in our
specific KEM/DEM setting where the DEM keys produced by the KEM may
be “vulnerable”.

2. Security Definitions

In this section we formally introduce different security notions from PKE
schemes, KEMs, and DEMs.

We first need to introduce some common notation. If x is a string, then
|x| denotes its length, while if S is a finite set then |S| denotes its size.
If k ∈ N then 1k denotes the string of k ones. We write X||Y to denote
an encoding of two strings X and Y that allows to uniquely recover both

X and Y . If S is a set then s
$

← S denotes the operation of picking an
element s of S uniformly at random. We write A(x, y, . . .) to indicate that

A is an algorithm with inputs x, y, . . . and by z
$

← A(x, y, . . .) we denote the
operation of running A with inputs (x, y, . . .) and letting z be the output.
We write AO1,O2,...(x, y, . . .) to indicate that A is an algorithm with inputs

x, y, . . . and access to oracles O1,O2, . . . and by z
$

← AO1,O2,...(x, y, . . .) we
denote the operation of running A with inputs (x, y, . . .) and access to oracles
O1,O2, . . ., and letting z be the output.

2.1. Public Key Encryption

PKE Schemes. A public key encryption (PKE) scheme PKE = (PKE.Kg,
PKE.Enc,PKE.Dec) consists of three probabilistic polynomial-time (PPT) al-
gorithms. For consistency, we require2 that for all k ∈ N, all keypairs (pk , sk)
in the range of PKE.Kg(1k ), and all messages m ∈ {0, 1}∗, we always have
PKE.Dec(sk ,PKE.Enc(pk ,m)) = m.

PKE Indistinguishability. For atk ∈ {cpa, cca1 , cca2}, the notion of
indistinguishable against ATK attacks (IND-ATK) is captured by defining

2Some relaxations are possible, see [15, Comments after Def. 5.1.1], for example. Such
relaxations do not affect our results.
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the advantage of a PPT adversary F = (F1,F2) as

Adv
pke-ind-atk
PKE ,F (k) =

∣

∣

∣
Pr

[

Exp
pke-ind-atk-1
PKE ,F (k) = 1

]

− Pr
[

Exp
pke-ind-atk-0
PKE ,F (k) = 1

]
∣

∣

∣
,

where, for b ∈ {0, 1},

Experiment Exp
pke-ind-atk-b
PKE ,F

(k)

(pk , sk)
$

← PKE.Kg(1k) ; (St ,m0,m1)
$

← F
DEC1(sk ,·)
1 (pk), s.t. |m0| = |m1| ;

C ∗ $

← PKE.Enc(pk ,mb) ; b
′ $

← F
DEC2(sk ,·)
2 (C ∗,St) ; return b′

and the oracles DEC1 and DEC2 are defined as

atk DEC1(sk , ·) DEC2(sk , ·)

cpa ε ε

cca1 PKE.Dec(sk , ·) ε

cca2 PKE.Dec(sk , ·) PKE.Dec(sk , ·)

with the restriction that F2 is not allowed to query oracle DEC2(sk , ·) on
the target ciphertext C ∗. Here ε denotes an oracle which returns an empty
string for any input. Note that we use both capital and lower case letters
for the same concepts (like atk , cpa, . . .), depending on the expressions, so to
improve their readability.

We also require that F1 outputs two messages m0 and m1 of equal length.
This can be enforced, e.g., by only allowing F1 that always output equal-
length messages; equivalently, we can truncate m0 and m1 to min{|m0|, |m1|}
bits.

A public key encryption scheme PKE is said to be indistinguishable
against ATK attacks (IND-ATK) if the advantage function Adv

pke-ind-atk
PKE ,F (k)

is a negligible function in k for all polynomial-time adversaries F . Recall
that a function f(k) is negligible in k if there exists k0 ∈ N and c > 0 such
that f(k) < 1/kc for all k ≥ k0.

Vector Notation In the following, we will denote vectors in boldface, as
in C. We denote by |C| the number of components in C, and by C[i] the ith
component, such thatC = (C[1], . . . ,C[|C|]). We stress that in particular we
also consider the empty vector. We writeC = ε if |C| = 0. We use the natural
notation C ∈ C to indicate C = C[i] for some 1 ≤ i ≤ |C|. It will also be
convenient to extend decryption to vectors where the operation is performed
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componentwise, namely by M = (M[1], . . . ,M[|C|]) ← PKE.Dec(sk ,C) we
mean that M[i] ← PKE.Dec(sk ,C[i]) for 1 ≤ i ≤ |C|. We will consider
relations of arity t, where t will be polynomial in the security parameter k.
By writing R(M ,M) we mean R(M ,M[1], . . . ,M[t− 1]).

Formalization of non-malleability. Non-malleability was introduced
in [14] and subsequently refined [3, 15]. The goal of an adversary in a non-
malleability experiment is, given a ciphertext C , to come up with a vector
of ciphertexts C whose decryption M is meaningfully related to m, where
m is the plaintext encrypted in C . Here meaningfully related means that
R(M ,M) holds for some relation R. The question is how one can exactly
measure the advantage of an adversary. We will use the definition from [3]
which considers an experiment involving the adversary.

For atk ∈ {cpa, cca1 , cca2}, the notion of non-malleable against ATK
attacks (NM-ATK) is captured by defining the advantage function of a PPT
adversary F = (F1,F2) as

Adv
pke-nm-atk
PKE ,F (k) =

∣

∣

∣
Pr

[

Exp
pke-nm-atk-1
PKE ,F (k) = 1

]

− Pr
[

Exp
pke-nm-atk-0
PKE ,F (k) = 1

]∣

∣

∣
.

Here, for b ∈ {0, 1},

Experiment Exp
pke-nm-atk-b
PKE ,F

(k)

(pk , sk)
$

← PKE.Kg(1k) ; (St ,M)
$

← F
DEC1(sk ,·)
1 (pk) ;

m∗
0,m

∗
1

$

←M ; C ∗ $

← PKE.Enc(pk ,m∗
1) ;

(R,C)
$

← F
DEC2(sk ,·)
2 (C ∗,St) ; M← PKE.Dec(sk ,C)

If C ∗ 6∈ C and R(m∗
b ,M) then return 1 else return 0

and the oracles DEC1 and DEC2 are defined as above, again with the restriction
that A2 is not allowed to query DEC2 for C ∗. In the experiment M is a

probability distribution on the space of messages, and m
$

←M denotes the
choice of a message following this distribution. We insist that M is valid;
that is, |m0| = |m1| for any m0,m1 that are given non-zero probability in
M. (See also the discussion after our PKE indistinguishability definitions.)

The relations among all these different security notions for public key
encryption schemes were established in [3]. They are summarized in Figure 2.
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NM-CPA NM-CCA1 NM-CCA2

IND-CPA IND-CCA1 IND-CCA2

/

//

Figure 2: Implications and separations between security notions for PKE schemes
from [3]. Note that these implications also hold for the corresponding KEM secu-
rity notions.

2.2. Public Key Encapsulation Mechanisms

Now a public-key encapsulation mechanism (KEM) KEM = (KEM.Kg,
KEM.Enc,KEM.Dec) with associated key-space KeySp(k) (which we assume
to be KeySp(k) = {0, 1}ℓ(k), where ℓ(k) is the key-length) consists of three
PPT algorithms. For consistency, we require that for all k ∈ N, and all

(K,C )
$

← KEM.Enc(1k , pk) we have Pr [KEM.Dec(sk ,C ) = K ] = 1, where

the probability is taken over the choice of (pk , sk)
$

← KEM.Kg(1k), and the
coins of all the algorithms in the expression above.

KEM Indistinguishability. The notion of indistinguishablity of KEMs
against CCA2 attacks was established in [11]. Using the ideas from Sec-
tion 2.1 it is straightforward to also extend it to CPA and CCA1 attacks.

For atk ∈ {cpa, cca1 , cca2}, the notion of indistinguishable against ATK
attacks (IND-ATK) is captured by defining the advantage function of a PPT
adversary A = (A1,A2) as

Advkem-ind-atk
KEM ,A (k) =

∣

∣

∣
Pr

[

Expkem-ind-atk-1
KEM ,A (k) = 1

]

− Pr
[

Expkem-ind-atk-0
KEM ,A (k) = 1

]∣

∣

∣
,

where, for b ∈ {0, 1},

Experiment Expkem-ind-atk-b
KEM ,A

(k)

(pk , sk)
$

← KEM.Kg(1k) ; St
$

← A
DEC1(sk ,·)
1 (pk) ;

K∗
0

$

← KeySp(k) ; (K∗
1 ,C

∗)
$

← KEM.Enc(pk) ;

b′
$

← A
DEC2(sk ,·)
2 (pk ,C ∗,K∗

b ,St) ; return b′
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with the restriction that A is not allowed to query DEC2(sk , ·) on the target
ciphertext C ∗. Oracles DEC1 and DEC2 are defined as in the case of PKE.

KEM Non-Malleability. In the PKE case, the adversary in the first
stage has to output a description of the message space M. This models
the situation where an adversary may attack only a specific set of plaintexts
such as the two messages “yes” and “no”. With a KEM, the situation is
different. A KEM is used to create ciphertexts for random keys, where the
keys are uniformly distributed over some fixed key-space (whose description
is contained in the public key). In general there is no efficient way to create
a ciphertext for an arbitrary key. Therefore it is unreasonable to let the
adversary define a key distribution K since the challenger would not be able
to efficiently sample pairs of keys and ciphertexts where the keys are drawn
according to K. We rather define K to be the sampling algorithm that returns
a key uniformly distributed in the key-space, just as KEM.Enc(pk) should do.
We now give the formal definition of NM for KEMs as proposed by Nagao,
Manabe, and Okamoto [24].

For atk ∈ {cpa, cca1 , cca2}, the notion of non-malleability against ATK
attacks (NM-ATK) is captured by defining the advantage function of a PPT
adversary A = (A1,A2) as

Advkem-nm-atk
KEM ,A (k) =

∣

∣

∣
Pr

[

Expkem-nm-atk-1
KEM ,A (k) = 1

]

− Pr
[

Expkem-nm-atk-0
KEM ,A (k) = 1

]∣

∣

∣
,

where, for b ∈ {0, 1},

Experiment Expkem-nm-atk-b
KEM ,A

(k)

(pk , sk)
$

← KEM.Kg(1k) ; St
$

← A
DEC1(sk ,·)
1 (pk) ;

K∗
0

$

← KeySp(k) ; (K∗
1 ,C

∗)
$

← KEM.Enc(pk) ; c
$

← {0, 1} ;

(R,C)
$

← A
DEC2(sk ,·)
2 (C ∗, (K∗

c ,K
∗
1−c),St) ; K← KEM.Dec(sk ,C)

If C ∗ 6∈ C and R(K∗
b ,K) then return 1 else return 0.

The relation between the security notions for KEMs is the same as in the
PKE case (see Figure 2). The equivalence between IND-CCA2 and NM-
CCA2 was shown in [24] and the rest of the relations can be proved with a
similar reasoning than in the PKE case studied in [3].

2.3. Data Encapsulation Mechanisms
A data encapsulation mechanism (DEM) DEM = (DEM.Kg,DEM.Enc,

DEM.Dec) consists of three PPT algorithms. We require that for all k ∈ N,
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and all messages m, we have Pr [DEM.Dec(K,DEM.Enc(K,m)) = m ] = 1,

where the probability is taken over the choice of K
$

← DEM.Kg(1k ), and the
coins of all the algorithms in the expression above.

DEM Indistinguishability. It is well known how to define indistinguisha-
bility against CPA, CCA1, and CCA2 attacks for DEMs [2]. We consider
two more attack forms which we call one-time attacks (OT) and one-time
(adaptive) chosen-ciphertext attacks (OTCCA).

For atk ∈ {ot , otcca, cpa, cca1 , cca2}, the notion indistinguishable against
ATK attacks (IND-ATK) is captured by defining the advantage function of
a PPT adversary B = (B1,B2) as

Advdem-ind-atk
DEM ,B (k) =

∣

∣

∣
Pr

[

Expdem-ind-atk-1
DEM ,B (k) = 1

]

− Pr
[

Expdem-ind-atk-0
DEM ,B (k) = 1

]∣

∣

∣
,

where, for b ∈ {0, 1},

Experiment Expdem-ind-atk-b
DEM ,B

(k)

K
$

← DEM.Kg(1k) ; (St ,m0,m1)
$

← B
ENC(·),DEC1(sk ,·)
1 (1k), s.t. |m0| = |m1| ;

C ∗ $

← DEM.Enc(K,mb) ; b
′ $

← B
ENC(·),DEC2(sk ,·)
2 (C ∗,St) ; return b′

and the oracles ENC, DEC1, and DEC2 are defined as

ENC(·) DEC1(sk , ·) DEC2(sk , ·)

ot ε ε ε

otcca ε ε DEM.Dec(K, ·)
cpa DEM.Enc(K, ·) ε ε

cca1 DEM.Enc(K, ·) DEM.Dec(K, ·) ε

cca2 DEM.Enc(K, ·) DEM.Dec(K, ·) DEM.Dec(K, ·)

with the restriction that B is not allowed to query the oracle DEC2(·) on the
target ciphertext C ∗. For clarification we note that in [17] different notation
is used for attack forms on DEMs: OT is P0-C0, CPA is P2-C0, CCA1 is
P2-C1, and CCA2 is P2-C2, whereas OTCCA was not considered.

DEM Non-Malleability. Let B = (B1,B2) be a PPT adversary. For
ATK ∈ {ot , otcca, cpa, cca1 , cca2}, the notion of non-malleability against
ATK attacks (NM-ATK) is captured by defining the advantage of B as

Advdem-nm-atk
DEM ,B (k) =

∣

∣

∣
Pr

[

Expdem-nm-atk-1
DEM ,B (k) = 1

]

− Pr
[

Expdem-nm-atk-0
DEM ,B (k) = 1

]∣

∣

∣
,
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where, for b ∈ {0, 1},

Experiment Expdem-nm-atk-b
DEM ,B

(k)

K
$

← DEM.Kg(1k) ; (St ,M)
$

← B
ENC(·),DEC1(sk ,·)
1 (1k) ; m∗

0,m
∗
1

$

←M ;

C ∗ $

← DEM.Enc(K,m∗
1) ; (R,C)

$

← B
ENC(·),DEC2(sk ,·)
2 (C ∗,St) ;

M← DEM.Dec(K,C)
If C ∗ 6∈ C and R(m∗

b ,M) then return 1 else return 0

and the oracles ENC, DEC1, and DEC2 are defined as in the IND case.
Katz and Yung [17] already provide security definitions for {OT,CPA,

CCA1,CCA2}) attacks which we extend (motivated by the KEM/DEM ap-
porach [11]) by adding OTCCA attacks. We stress that, in contrast to the
original definition of Katz and Yung [17], we allow invalid ciphertexts in C

as well as an empty C. This leads to a relatively strict definition of non-
malleability,3 but we think that this best reflects the underlying intuition. It
should not be possible to have a “secure” system which is only secure because
the adversary cannot come up with a valid encryption of anything. Consider,
for instance, a DEM which in every encryption leaks the complete plaintext,
but authenticates every encryption so that no adversary can come up with
a valid ciphertext without knowing the secret key. This scheme is trivially
secure with respect to a non-malleability notion from [17] that requires the
adversary to come up with a valid, non-empty ciphertext vector. (In fact,
this is precisely the example from [17, Proof of Theorem 7].) We believe that
this “security” is intuitively not justified.

Relations. Figure 3 shows the relations among the different security no-
tions for DEMs. Due to our alternative security notion of NM, the proofs
from [3] relating {IND,NM}−{CPA,CCA1,CCA2}) for PKE schemes carry
over the DEM setting.4 Therefore the center diagram in Figure 3 exactly co-
incides with the relations for PKE schemes and KEMs (Figure 2).

The only thing that remains to prove is to extend a result from [3] showing
that NM is strictly stronger than IND for all attacks forms. For CCA2

3We remark that this stronger notion of non-malleability is already mentioned (but not
used) in [17].

4Concretely, for PKE schemes [3, Theorem 3.3] shows IND-OTCCA ⇒ NM-OTCCA
and IND-CCA2⇒ NM-CCA2; [3, Theorem 3.5] shows IND-CCA1 6⇒ NM-CPA; [3, Theo-
rem 3.7] shows NM-CCA1 6⇒ NM-CCA2; [3, Theorem 3.6] shows NM-CPA 6⇒ IND-CCA1.
All these results carry over to the DEM setting.
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[17]
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Figure 3: Implications and separations between the security notions for DEMs.

attacks this is in contrast to [17] (recall that [17] uses a weaker notion of
non-malleability).

Theorem 2.1. [NM-ATK ⇒ IND-ATK ] If a DEM is secure in the sense
of NM-ATK then it is secure in the sense of IND-ATK, for any ATK ∈
{OT,OTCCA,CPA,CCA1,CCA2}.

Proof. For ATK ∈ {CPA,CCA1,CCA2} this is essentially Theorem 3.1
from [3]. We focus on the case ATK ∈ {OT,OTCCA}.

AssumeDEM is secure in the NM-ATK sense for ATK ∈ {OT,OTCCA}.
We will show it is also secure in the sense of IND-ATK. Let B = (B1,B2) be an
IND-ATK adversary attackingDEM . We have to show thatAdvdem-ind-atk

DEM ,B (·)
is negliglible. To this end we will describe a NM-ATK adversary A =
(A1,A2) attacking DEM .

Alg. A1(1
k)

(m0,m1, St)
$

← B1(1
k)

M← {m0,m1}
Return (M, St ,m0,m1)

Alg. A
DEC2(sk ,·)
2

(C ∗, St ,m0,m1)

c
$

← B
DEC

′

2
(sk ,·)

2 (m0,m1,C
∗, St)

Define R(m0) := 1− c, R(m1) := c
Return (C = ε,R)

In the OTCCA case, adversary B2 has access to an oracle DEC′2 which is
simulated by A2 using its own oracle DEC2. Note that A2 outputs an empty
ciphertext vector C = ε.

14



It is easy to verify that adversary A perfectly simulates B’s view in the
IND-ATK game. Furthermore, it holds

Pr
[

Expdem-nm-atk-1
DEM ,A (k) = 1

]

= Pr
[

Expdem-ind-atk-b
DEM ,B (k) = b

]

.

In effect, by [3, Proposition 3.8] we may assume here, without loss of general-
ity, that we have m0 6= m1 for the two messages output by B1. Adversary A
returns a relation R : {m0,m1} → {0, 1} such that R(m) = 1 if m = mc and
R(m) = 0, otherwise. In the IND-ATK game we have DEM.Dec(K,C ∗) = mb

and therefore by definition of R, we have R(mb) = 1 if and only if b = c.

Finally, we have that Pr
[

Expdem-nm-atk-0
DEM ,A (k) = 1

]

= 1/2. This follows

from an information theoretic argument since A does not have any informa-
tion about the message m̃ ∈ {m0,m1} in which the relation R is evaluated.

Applying the claims yields Advdem-ind-atk
DEM ,B (k) = 2 · Advdem-nm-atk

DEM ,A (k).

Since DEM is secure in the sense of IND-ATK, Advdem-nm-atk
DEM ,A (·) and hence

Advdem-ind-atk
DEM ,B (k) is negliglible, too.

2.4. Hybrid Encryption

Let KEM = (KEM.Kg,KEM.Enc,KEM.Dec) be a public-key encapsula-
tion mechanism (KEM) and DEM = (DEM.Kg,DEM.Enc,DEM.Dec) be a
data encapsulation mechanism (DEM). For simplicity we assume that the
two schemes are compatible in the sense that for all security parameters k,
we have that the KEM’s and the DEM’s key-space are equal. (If that is not
the case we can apply a suitable key-derivation function [11] that maps the
KEM’s key-space to the DEM’s key-space.) Then we can consider the hybrid
public key encryption scheme PKEKEM ,DEM = (PKE.Kg,PKE.Enc,PKE.Dec)
which is constructed by combining KEM and DEM as follows:

Alg. PKE.Kg(1k )

(pk , sk)
$

← KEM.Kg(1k )
Return (pk , sk)

Alg. PKE.Enc(pk ,M )

(K,C1)
$

← KEM.Enc(pk)

C2
$

← DEM.Enc(K,M )
Return (C1,C2)

Alg. PKE.Dec(sk , (C1,C2))

K
$

← KEM.Dec(sk ,C1)

M
$

← DEM.Dec(K,C2)
Return M

3. Sufficient Conditions for Secure Hybrid Encryption

3.1. Claims

We state more formally the positive results summarized in Figure 1
and provide proofs. The following three results can be considered as the
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main composition theorems for hybrid encryption. They show that, for
X ∈ {IND,NM} and Y ∈ {OT,OTCCA,CPA,CCA1,CCA2}, an X-Y se-
cure KEM and a X-Y secure DEM imply an X-Y secure hybrid PKE scheme.
Interestingly, in some cases we have that for the DEM part a weaker attack
form than Y is already sufficient.

Theorem 3.1. [IND-ATK KEM + IND − ATK′ DEM ⇒ IND-ATK PKE]
For ATK ∈ {CPA,CCA1,CCA2}, if KEM is a secure KEM under IND-
ATK attacks and DEM is a secure DEM under IND − ATK′ attacks, then
PKEKEM ,DEM is a secure PKE scheme under IND-ATK attacks, where for
ATK ∈ {CPA,CCA1}, ATK′ = OT and for ATK = CCA2, ATK′ =
OTCCA.

The CCA2 version of the proof can be found in Theorem 5 of [11]. The
proofs for the other two cases are almost identical and omitted here.

The following two results are proved in Section 3.2.

Theorem 3.2. [NM-CCA1 KEM + NM-OT DEM ⇒ NM-CCA1 PKE] If
KEM is a secure KEM under NM-CCA1 attacks and DEM is a secure DEM
under NM-OT attacks, then PKEKEM ,DEM is a secure PKE scheme under
NM-CCA1 attacks.

Theorem 3.3. [NM-CPA KEM+NM-OT DEM⇒ NM-CPA PKE] IfKEM
is a secure KEM under NM-CPA attacks and DEM is a secure DEM under
NM-OT attacks, then PKEKEM ,DEM is a secure PKE scheme under NM-CPA
attacks.

We remark that the reductions are tight; that is, adversarial advantage
and running times are preserved during the reduction.

3.2. Proof of Thms 3.2 and 3.3

These theorems state that NM-CCA1 KEM + NM-OT DEM ⇒ NM-
CCA1 PKE, and NM-CPA KEM + NM-OT DEM ⇒ NM-CPA PKE. We
will detail the first result, and will briefly comment the second result in the
last paragraph of this section.

As a technical tool, we first provide an equivalent formulation of the NM
notion for KEM s. This notion of non-malleability under parallel chosen-
ciphertext attacks was introduced in [5] for the PKE setting, and extended
to the KEM setting in [24].
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For atk ∈ {cpa, cca1 , cca2}, the notion of non-malleability under parallel
ATK attacks (PNM-ATK) is captured by defining the advantage function of
a PPT adversary A = (A1,A2) as

Adv
kem-pnm-atk
KEM ,A

(k) =
∣

∣

∣
Pr

[

Exp
kem-pnm-atk-1
KEM ,A

(k) = 1
]

− Pr
[

Exp
kem-pnm-atk-0
KEM ,A

(k) = 1
]∣

∣

∣
,

where, for d ∈ {0, 1},

Experiment Exp
kem-pnm-atk-d
KEM ,A

(k)

(pk , sk)
$

← KEM.Kg(1k); St1
$

← A
DEC1(sk ,·)
1 (pk);

K∗
0

$

← KeySp(k) ; (K∗
1 ,C

∗)
$

← KEM.Enc(pk) ;K∗ ← K∗
d ;

(St2,C)
$

← A
DEC2(sk ,·)
2 (C ∗,K∗,St1); K

$

← KEM.Dec(C); d′
$

← A3(K,St2)
If (C ∗ 6∈ C) then return d′ else return 0

and the oracles DEC1 and DEC2 are defined as in Section 2.1.
A key encapsulation mechanism KEM is said to be PNM against ATK

attacks if the advantage function Adv
kem-pnm-atk
KEM ,A

(k) is a negligible function
in k for all polynomial-time adversaries A.

It has been proved in [24] that (a slightly different but equivalent formu-
lation of) PNM-ATK is tightly equivalent to NM-ATK for ATK ∈ {CPA,
CCA1,CCA2}. In the following proof, we are going to use therefore the
PNM notion instead of the equivalent NM notion.

Proof of Theorems 3.2 and 3.3. First, to prove Theorem 3.2, as-
sume KEM to be NM-CCA1 secure (and thus PNM-CCA1 secure), and
DEM to be NM-OT secure. Consider an adversary F = (F1,F2) on the
NM-CCA1 security of PKEKEM ,DEM . Denote the NM-CCA1 experiment

Exp
pke-nm-atk-b
PKEKEM ,DEM ,F(k) by Gb

0.

In Gb
0, the challenge ciphertext C∗ is generated as C∗ = (C∗

1 , C
∗
2 ) for

(K∗, C∗
1)

$

← KEM.Enc(pk) and C∗
2

$

← DEM.Enc(K∗,m∗
1). In experiment

Gb
1, we modify the generation of the challenge ciphertext as follows: C∗ =

(C∗
1 , C

∗
2) for (K∗, C∗

1 )
$

← KEM.Enc(pk) and C∗
2

$

← DEM.Enc(K−,m∗
1) with

an independently chosen key K− $

← {0, 1}k . During the decryption of the
ciphertext vector C for evaluating the relation R, the KEM ciphertext C∗

1 is
always decapsulated as K− (without even running KEM.Dec). We claim:

Pr
[

Gb
0 → 1

]

≈ Pr
[

Gb
1 → 1

]

(1)
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for b = 0, 1 (denoting by X ≈ Y that |X − Y | is negligible in k). To see
this (for fixed b), construct an adversary A on the PNM-CCA1 security of
KEM , so that A = (A1,A2,A3) simulates the setting of game Gb

0 resp. Gb
1

for an internal simulation of F . As a public key, A1 relays its own public
key (for KEM ) to F1, and oracle queries from F1 are answered using A1’s
own oracle. The key point is that A2 presents to F2 a challenge ciphertext
C∗ = (C∗

1 , C
∗
2 ) that is built from A2’s own challenge (K+, C+) as C∗

1 ← C+

and C∗
2

$

← DEM.Enc(K+,m∗
1).

Once F2 outputs a ciphertext vector C along with a relation R, A2 trans-
lates this into a ciphertext vector C′ for its own PNM-CCA1 setting and
relays R along with K+ as state information to A3. Specifically, C

′ contains
all KEM ciphertexts of C which are not equal to the challenge KEM cipher-
text C+. Finally, A3, on input (K+, R,K′), where K′ is the decapsulation of
C′, outputs R(m∗

b ,M). Here, M is generated by decapsulating C with the
keys in K′ and using K+ as the decapsulation of C+.

Now if A itself is run in Exp
kem-pnm-cca1-d
KEM ,A

, its output is that of Gb
1−d when

run with F . Since KEM is PNM-CCA1 secure, (1) follows.
Next we simulate Gb

1 (with adversary F) inside a NM-OT adversary B on
DEM . Here, B chooses a PKEKEM ,DEM keypair on its own for the experi-
ment and answers all oracle queries from F using this secret key. B relays
F ’s choice of message space and then uses its own NM-OT challenge C× in
F ’s challenge ciphertext C∗ = (C∗

1 , C
∗
2) as C∗

2 . Relation R and ciphertext
vector C from F are translated as follows: if a ciphertext (C i

1, C
i
2) ∈ C has

C i
1 6= C∗

1 , it is decrypted using the prepared keypair and hardcoded into R.
But all C i

2 with C i
1 = C∗

1 are collected and output by B as its own ciphertext
vector (as ciphertexts encrypted by the same unknown key as C∗

2 = C×).
Now the experiment Expdem-nm-atk-b

DEM ,B is simply a reformulation of Gb
1 (with

adversary F). By the NM-OT security ofDEM , we thus have Pr [G0
1 → 1 ] ≈

Pr [G1
1 → 1 ], and hence, using (1), Pr [G0

0 → 1 ] ≈ Pr [G1
0 → 1 ], which shows

PKEKEM ,DEM secure.
The only difference in the CPA case is that F has no oracle access in

the first phase; but then the reductions above work fine with a KEM that is
PNM-CPA secure and a DEM which is NM-OT secure.
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4. Insufficient Conditions for Secure Hybrid Encryption

4.1. Claims

Now we turn to negative results from Figure 1. The following results are
successively proved in Section 4.2

Theorem 4.1. [IND-CCA1 KEM + IND-CCA2 DEM 6⇒ NM-CPA PKE]
Assume there exist a scheme KEM which is secure in the sense of IND-
CCA1 and a scheme DEM which is secure in the sense of IND-CCA2. Then
there exist a scheme KEM

′
which is secure in the sense of IND-CCA1 and

a scheme DEM
′
which is secure in the sense of IND-CCA2, such that the

hybrid scheme PKEKEM
′
,DEM

′ is not secure in the sense of NM-CPA.

Theorem 4.2. [NM-CPA KEM + IND-CCA2 DEM 6⇒ IND-CCA1 PKE]
Assume there exist a scheme KEM which is secure in the sense of NM-
CPA and a scheme DEM which is secure in the sense of IND-CCA2. Then
there exist a scheme KEM

′
which is secure in the sense of NM-CPA and

a scheme DEM
′
which is secure in the sense of IND-CCA2, such that the

hybrid scheme PKEKEM
′
,DEM

′ is not secure in the sense of IND-CCA1.

Theorem 4.3. [∗KEM+ IND-CCA1 DEM 6⇒NM-CPA PKE] Assume there
exists a scheme DEM which is secure in the sense of IND-CCA1. Then there
exists a scheme DEM

′
which is also secure in the sense of IND-CCA1, such

that for any KEM (independently of its security level), the hybrid scheme
PKEKEM ,DEM

′ is not secure in the sense of NM-CPA.

Theorem 4.4. [∗ KEM + NM-CCA1 DEM 6⇒ IND-CCA2 PKE] Assume
there exists a scheme DEM which is secure in the sense of NM-CCA1. Then
there exists a scheme DEM

′
which is also secure in the sense of NM-CCA1,

such that for any KEM (independently of its security level), the hybrid
scheme PKEKEM ,DEM

′ is not secure in the sense of IND-CCA2.

Theorem 4.5. [NM-CCA1 KEM + IND-CCA2 DEM 6⇒ IND-CCA2 PKE]
Assume there exist a scheme KEM which is secure in the sense of NM-
CCA1 and a scheme DEM which is secure in the sense of IND-CCA2. Then
there exist a scheme KEM

′
which is secure in the sense of NM-CCA1 and

a scheme DEM
′
which is secure in the sense of IND-CCA2, such that the

hybrid scheme PKEKEM
′
,DEM

′ is not secure in the sense of IND-CCA2.
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4.2. Proof of Thm 4.1: IND-CCA1 KEM + IND-CCA2 DEM 6⇒ NM-CPA
PKE.

Assume there exists an IND-CCA1 secure scheme KEM . We modify
KEM into a scheme KEM

′
= (KEM′.Kg,KEM′.Enc,KEM′.Dec) which is still

secure in the sense of IND-CCA1. For that, we split the keys generated by
KEM.Enc in two parts of the same length k (we assume that the key length
of KEM.Dec is 2k), denoting this fact as K = K1||K2. Concretely, we set
KEM′.Kg = KEM.Kg and

Alg. KEM′.Enc(pk)

(K1||K2,C1)
$

← KEM.Enc(pk)
Return (K1||K2,C1||⊥)

Alg. KEM′.Dec(sk ,C ′
1||C

′
2)

K1||K2
$

← KEM.Dec(sk ,C ′
1)

If C ′
2 ∈ {⊥,K2} then K = K1||K2 else K = ⊥

Return K

Note that KEM
′
inherits the IND-CCA1 security of KEM : any IND-

CCA1 adversary A′ on KEM
′
can be reduced to an IND-CCA1 adversary

on KEM by straightforwardly translating the challenge ciphertext and the
decryption queries in the first phase to the KEM

′
setting that A′ expects.

With respect to the DEM part, assume now that there exists an IND-
CCA2 secure scheme DEM = (DEM.Kg,DEM.Enc,DEM.Dec), with key-
space {0, 1}k . We modify DEM into a new DEM DEM

′
= (DEM′.Kg,

DEM′.Enc,DEM′.Dec) (with key-space {0, 1}2k so as to be compatible with
KEM

′
) which is still secure in the sense of IND-CCA2. Again we split the

keys K = K1||K2 used by DEM in two parts of the same length.

Alg. DEM′.Kg(1k)

K1
$

← DEM.Kg(1k )

K2
$

← {0, 1}k

Return K = K1||K2

Alg. DEM′.Enc(K,M )
Parse K as K1||K2

C ′
1

$

← DEM.Enc(K1,M )
C ′
2 ← K2

Return C ′ = C ′
1||C

′
2

Alg. DEM′.Dec(K,C ′)
Parse C ′ as C ′

1||C
′
2 and K as K1||K2

If C ′
2 = K2 then M ← DEM.Dec(K1,C

′
1)

else M ←⊥
Return M

Claim 4.6. If DEM is secure in the sense of IND-CCA2, then so is DEM
′
.
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Proof. We reduce an adversary B′ = (B′
1,B

′
2) on the IND-CCA2 security of

DEM
′
to an adversary B = (B1,B2) on the IND-CCA2 security of DEM .

The idea is that B internally runs B and simply translates challenge cipher-
text and oracle queries:

Alg. BENC1,DEC1
1

(1k )

K2
$

← {0, 1}k ; St
$

← B
′ENC′

1
,DEC′

1

1 (1k )
Return St ||K2

Alg. B2
ENC2,DEC2(C ∗,St ||K2)

b
$

← B
′ENC′

2
,DEC′

2

2 (C ∗,St)
Return b

Here, oracle ENC′2(M) returns ENC2(M)||K2. Oracle DEC′2(sk , C
′
1||C

′
2) returns

DEC2(sk , C
′
1) if C ′

2 = K2 and ⊥ otherwise. (Similarly for ENC′2 and DEC′2.)
Note that this implies that B never queries DEC′2 on its target ciphertext.

Now B′ gets identical views in the simulation inside B and in the IND-
CCA2 experiment withDEM

′
. HenceAdvdem-ind-atk

DEM
′
,B′

(k) = Advdem-ind-atk
DEM ,B (k)

and thus, DEM
′
inherits the IND-CCA2 security of DEM .

Note that DEM
′
also inherits a possible ciphertext integrity property [18,

4] from DEM . That is, if an adversary cannot produce fresh ciphertexts for
DEM that are valid (in the sense that they do not get rejected by the
decryption algorithm), then the same holds for DEM

′
. The idea is that an

adversary producing a valid DEM
′
ciphertext (C ′

1,C
′
2) (with C ′

2 = K2) must
already produce a valid DEM ciphertext C ′

1.

Claim 4.7. PKEKEM
′
,DEM

′ is not secure in the sense of NM-CPA.

Proof. We build a successful adversary F = (F1,F2) against PKEKEM
′
,DEM

′ .
In the first phase, F1 receives a public key pk and chooses as M the uni-
form distribution in a set of two messages m0,m1. Then, in the second
phase, F2 receives a challenge ciphertext for the hybrid PKE scheme: C ∗ =

(C ∗
1 ||C

∗
2 ,C

∗
3 ||C

∗
4 ) where (K1||K2,C )

$

← KEM.Enc(pk), C ∗
1 = C , C ∗

2 =⊥,
C ∗

3 = DEM.Enc(K1,M
∗) and C ∗

4 = K2, for some challenge message m∗ ∈
{m0,m1}.

Now, the ciphertext C = (C ∗
1 ||C

∗
4 ,C

∗
3 ||C

∗
4 ) is also a valid ciphertext for

PKEKEM
′
,DEM

′ which encrypts the same message m∗. Therefore, F2 can
output (R,C ), where R(m,m′) = 1 if and only if m = m′. In the experi-
ment with b = 1, where message m in the evaluation of the relation is the
challenge message m∗, the relation holds with probability one (message m′

is in both experiments m′ = PKE.Dec(sk ,C ) = m∗); on the other hand,
in the experiment with b = 0, where message m in the evaluation of the
relation is message taken uniformly (and independently from m∗) from the
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set {m0,m1}, the relation only holds with probability 1/2. Therefore the
adversary F is successful.

Note that the use of the identity relation in a non-malleability attack is
explicitly disallowed in [14]; however, our attack from above can be adapted
to use a “bitwise complement” relation at the price of a more complicated
KEM and DEM modification.

4.3. Proof of Thm 4.2: NM-CPA KEM + IND-CCA2 DEM 6⇒ IND-CCA1
PKE

Assume there exists an NM-CPA secure scheme KEM = (KEM.Kg,
KEM.Enc,KEM.Dec). Once again, it will be useful to assume that KEM
has a key-space of {0, 1}2k . Also we assume that the secret keys sk of KEM
are of the form sk = sk 1|| . . . ||sk p(k) for sk i ∈ {0, 1}

k and p(k) a fixed poly-
nomial. Both of these assumptions are without loss of generality.

We modify KEM into a KEM KEM
′
= (KEM′.Kg,KEM′.Enc,KEM′.Dec)

which is still secure in the sense of NM-CPA. The modification is very similar
to the one proposed in Section 3.6 of [3] for the case of PKE schemes.

Alg. KEM′.Kg(1k )

(pk , sk)
$

← KEM.Kg(1k )

v
$

← {0, 1}k

pk ′
$

← pk ; sk ′
$

← (sk , v)
Return (pk ′, sk ′)

Alg. KEM′.Enc(pk ′)

(K,C )
$

← KEM.Enc(pk ′)
Define C ′ = 0||C
Return (K,C ′)

Alg. KEM′.Dec(sk ′,C ′)
Parse sk ′ = (sk , v) and C ′ = b||C
If b = 0 return KEM.Dec(sk ,C )
else if C = v||i for 1 ≤ i ≤ p(k) then

return 0k ||sk i else return 0k ||v

Using the same techniques as in Section 3.6 of [3] for the case of PKE schemes,
KEM

′
can be proved to be secure in the sense of NM-CPA, whereas it is

obviously insecure in the sense of IND-CCA1.
With respect to the DEM part, assume now that there exists an IND-

CCA2 secure scheme DEM = (DEM.Kg,DEM.Enc,DEM.Dec) (with key-
space {0, 1}2k , so that we can write K = K1||K2 for keys K1, K2 ∈ {0, 1}

k ).
We modify DEM into a DEM DEM

′
= (DEM′.Kg,DEM′.Enc,DEM′.Dec)

which is still secure in the sense of IND-CCA2.
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Alg. DEM′.Kg(1k )

K
$

← DEM.Kg(1k )
Return K

Alg. DEM′.Enc(K,m)
Write K = K1||K2

If K1 = 0k then C = K⊕m

Else C
$

← DEM.Enc(K,m)
Return C

Alg. DEM′.Dec(K,C )
Write K = K1||K2

If K1 = 0k then m = K⊕C
Else m← DEM.Dec(K,C )
Return m

NowDEM
′
inheritsDEM ’s IND-CCA2 security, since the only difference

between the two schemes appears when DEM.Kg produces a 2k -bit key K
such that the first k bits ofK are all zero (which happens only with negligible
probability). Except for this negligible probability, the advantages of an
adversary against DEM and an adversary against DEM

′
are exactly the

same. For similar reasons, DEM
′
enjoys ciphertext integrity [18, 4] if DEM

does.

Claim 4.8. PKEKEM
′
,DEM

′ is not secure in the sense of IND-CCA1.

Proof. An adversary F against the IND-CCA1 property of PKEKEM
′
,DEM

′

receives a public key pk ′ resulting from (pk ′, sk ′) ← KEM.Kg′(1k). Recall
that sk ′ = (sk , v), where (pk ′, sk ′) ← KEM.Kg(1k) and we write sk =
sk 1|| . . . ||skp(k).

In the first phase, F can ask decryption queries to an oracle; in particular,
it can first ask for the decryption of the hybrid ciphertext (1||0||0, 02k ). By
definition of KEM

′
, the key encapsulated in C ′ = 1||0||0 is K = K1||K2 =

0k ||v; by definition of DEM
′
, since K1 = 0k , we have that the decrypted

message obtained from this query is m = K⊕02k = K = 0k ||v. Once F has
obtained the secret value of v, it can ask for the decryption of the cipher-
texts (1||v||i, 02k ), obtaining as answers the messages 0k ||sk i. Therefore, F
is able to obtain the whole secret key sk ′ of the hybrid encryption scheme,
even before receiving the challenge ciphertext. This means in particular that
PKEKEM

′
,DEM

′ is not IND-CCA1 secure.

4.4. Proof of Thm 4.3: ∗ KEM + IND-CCA1 DEM 6⇒ NM-CPA PKE

For this, we can use the ideas in the proof of [3, Theorem 3.5]. Say there
exists an IND-CCA1 secure DEM DEM = (DEM.Kg,DEM.Enc,DEM.Dec).
We modifyDEM into a new DEMDEM

′
= (DEM′.Kg,DEM′.Enc,DEM′.Dec)

which is still secure in the sense of IND-CCA1. The new DEM DEM
′
is de-

fined as follows. Here we denote by m the bitwise complement of the string
m, namely the string obtained by flipping each bit of m.
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Alg. DEM′.Kg(1k)

K
$

← DEM.Kg(1k)
Return K

Alg. DEM′.Enc(K,m)

C1
$

← DEM.Enc(K,m)

C2
$

← DEM.Enc(K,m)
Return C ′ = C1||C2

Alg. DEM′.Dec(K,C ′)
Parse C ′ as C1||C2

m← DEM.Dec(K,C1)
Return ⊥

The following was already proved in [3, Claim 3.10] for the PKE case. (The
proof holds literally, apart from obvious syntactic adaptations, in our case.)

Claim 4.9. If DEM is secure in the sense of IND-CCA1, then so is DEM
′
.

However, the attack from [3, Claim 3.9] carries over to the hybrid setting:

Claim 4.10. For any scheme KEM , PKEKEM ,DEM
′ is not secure in the sense

of NM-CPA.

Proof. Consider an arbitrary schemeKEM = (KEM.Kg,KEM.Enc,KEM.Dec).
In effect, we can easily construct a successful adversary F = (F1,F2) against
the NM-CPA property of the hybrid scheme: F1 receives a public key pk , re-
sulting from (pk , sk)← KEM.Kg(1k ); then it chooses the uniform distribution
on a set {m0,m1} of two messages, and receives a challenge ciphertext C ∗ =

(C1,C2||C3), where (K,C1)
$

← KEM.Enc(1k , pk), C2 = DEM.Enc(K,m∗) and
C3 = DEM.Enc(K,m∗), for some uniform message m∗ ∈ {m0,m1}. It is ev-
ident that C = (C1,C3||C2) is a valid encryption of message m∗ under the
scheme PKEKEM ,DEM

′ .
The adversary F2 can output (R,C), where C = C contains only one

ciphertext, and the relation is defined as R(m,m′) = 1 if and only if m′ = m.
In the real experiment (with b = 1), where m = m∗ in the evaluation of R,
the relation holds with probability one (message m′ is in both experiments
m′ = PKE.Dec(sk ,C ) = m∗). On the other hand, in the b = 0 experiment
we have that R is evaluated on a uniform message m ∈ {m0,m1} (chosen
independently from m∗), and in m∗, so the relation holds only with proba-
bility 1/2. Therefore the adversary F = (F1,F2) is successful in breaking
NM-CPA of this hybrid scheme.

4.5. Proof of Thm 4.4: ∗ KEM + NM-CCA1 DEM 6⇒ IND-CCA2 PKE

Assuming that there exists a NM-CCA1 secure schemeDEM = (DEM.Kg,
DEM.Enc,DEM.Dec), we modifyDEM into a new DEMDEM

′
= (DEM′.Kg,

DEM′.Enc,DEM′.Dec) which is still secure in the sense of NM-CCA1. This
modification is the same as the one proposed in Section 3.7 of [3] in order to
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prove that there exist (public key) encryption schemes which are NM-CCA1
secure but not NM-CCA2. Let F = {F k : k ≥ 1} be a family of pseudo-
random functions (this is no extra assumption): each F k = {FK : K ∈
{0, 1}k} is a finite collection of particular functions FK : {0, 1}k → {0, 1}k,
indexed by a key K. We denote as ε the empty string. Again we split the
keys K = K1||K2 used by DEM in two parts of the same length. The new
scheme DEM

′
is defined as follows.

Alg. DEM′.Kg(1k)

K1
$

← DEM.Kg(1k )

K2
$

← {0, 1}k

Return K = K1||K2

Alg. DEM′.Enc(K,m)
Parse K as K1||K2

C = DEM.Enc(K1,m)
Return C ′ = 0||C ||ε

Alg. DEM′.Dec(K,C ′)
Write K = K1||K2 and C ′ = b||C ||z
If b = 0 and z = ε, return DEM.Dec(K1,C )
Else if b = 1 and z = ε, return FK2

(C )
Else if b = 1 and z = FK2

(C ),
return DEM.Dec(K1,C )

Else return ⊥

The following has been proved as [3, Claim 3.15].

Claim 4.11. If DEM is secure in the sense of NM-CCA1, then so is DEM
′
.

Again, DEM uses keys of length 2k , hence we need a KEM with key-
space {0, 1}2k . (We stress again that this is without loss of generality.)So
for the rest of this proof, we assume that KEM is any KEM with key-space
{0, 1}2k .

Similar to the proof of Theorem 4.3, the attack from [3, Claim 3.14] on
DEM can be transported to the hybrid setting.

Claim 4.12. For any scheme KEM , PKEKEM ,DEM
′ is not secure in the sense

of IND-CCA2.

Proof. Consider an arbitrary KEM KEM = (KEM.Kg,KEM.Enc,KEM.Dec)
and consider the hybrid public key encryption scheme PKEKEM ,DEM

′ . We are
going to show that this hybrid scheme is not secure in the sense of IND-CCA2.
An adversary F against the IND-CCA2 property of PKEKEM ,DEM

′ receives
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a public key pk resulting from (pk , sk)← KEM.Kg(1k); after the first phase,

it receives a challenge ciphertext C ∗ = (C1, 0||C2||ε), where (K1,C1)
$

←
KEM.Enc(1k , pk) and C2 = DEM.Enc(K1,mb), for some messagemb (with b =
0, 1 depending on the IND experiment) between two messages m0,m1 chosen
by F . In the following phase, the adversary F has access to a decryption
oracle for ciphertexts different from C ∗.

In particular, it can first ask for the decryption of (C1, 1||C2||ε), obtaining
the value of FK2

(C ). Then it can ask for the decryption of (C1, 1||C2||FK2
(C )),

obtaining DEM.Dec(K1,C ) = mb and thus breaking not only the IND secu-
rity of the hybrid scheme, but also its one-wayness. Note that none of these
two submitted ciphertexts is equal to C ∗, as required.

4.6. Proof of Thm 4.5: NM-CCA1 KEM + IND-CCA2 DEM 6⇒ IND-CCA2
PKE

Assume there exists a NM-CCA1 secure scheme KEM = (KEM.Kg,
KEM.Enc,KEM.Dec), where we again assume that the key-space of KEM
is {0, 1}2k . We start off by modifying KEM into KEM

′
along the lines of

the modification of the DEM in the proof of Theorem 4.4. Namely, if F is a
family of pseudo-random functions, we define:

Alg. KEM′.Kg(1k)

(pk , sk)
$

← KEM.Kg(1k )

u
$

← {0, 1}k

sk ′ ← sk ||u
Return (pk , sk ′)

Alg. KEM′.Enc(pk)
(K,C ) = KEM.Enc(pk ′)
C ′ ← 0||C ||ε
Return (K ′,C ′)

Alg. KEM′.Dec(sk ′,C ′)
Write sk ′ = sk ||u and C ′ = b||C ||z
If b = 0 and z = ε, return KEM.Dec(sk ,C )
else if b = 1 and z = ε, return 0k ||Fu(C )
else if b = 1 and z = 0k ||Fu(C ) then
return KEM.Dec(sk ,C )

else return ⊥

Again, a trivial syntactic adaptation of [3, Claim 3.15] shows

Claim 4.13. If KEM is secure in the sense of NM-CCA1, then so is KEM
′
.

26



Combined with the IND-CCA2 secure DEM DEM
′
from the proof of

Theorem 4.2, we get a hybrid encryption scheme PKE = PKEKEM
′
,DEM

′ .

Now PKE is not IND-CCA2 secure. Namely, a CCA2 attack on KEM ’ along
the lines of the CCA2 attack on DEM ’ in the proof of Theorem 4.4 can be
carried out “through” the DEM DEM

′
just like in the proof of Theorem 4.2.

We omit the details.
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