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Abstract. At Eurocrypt 2011, Wee presented a generalization of thresh-
old public key encryption, threshold signatures, and revocation schemes
arising from threshold extractable hash proof systems. In particular, he
gave instances of his generic revocation scheme from the DDH assump-
tion (which led to the Naor-Pinkas revocation scheme), and from the
factoring assumption (which led to a new revocation scheme). We ex-
pand on Wee’s work in two directions:

(a) We propose threshold extractable hash proof instantiations from the
“Extended Decisional Diffie-Hellman” (EDDH) assumption due to
Hemenway and Ostrovsky (PKC 2012). This in particular yields
EDDH-based variants of threshold public key encryption, threshold
signatures, and revocation schemes. In detail, this yields a DCR-
based revocation scheme.

(b) We show that our EDDH-based revocation scheme allows for a mild
form of traitor tracing (and, thus, yields a new trace-and-revoke
scheme). In particular, compared to Wee’s factoring-based scheme,
our DCR-based scheme has the advantage that it allows to trace
traitors.

Keywords: broadcast encryption, revocation scheme, traitor tracing,
trace-and-revoke scheme, threshold extractable hash proof system, ex-
tended decisional Diffie-Hellman.

1 Introduction

Broadcast encryption, revocation schemes, traitor tracing, and trace-
and-revoke schemes. In a broadcast encryption (BE) scheme [17], a sender is
able to generate ciphertexts that only members of a privileged set S ⊆ {1, . . . , N}
of users — each given a long-lived user secret key — can decrypt. There exists
a large number of BE schemes under various assumptions and with various effi-
ciency characteristics (e.g., [17, 20, 8, 3, 21, 34, 42, 41]). In this work, we focus
on revocation schemes, which are a variant of BE schemes, where a set of re-
voked users (e.g., non-paying subscribers) R = {1, . . . , N} \ S is given as input
to the encryption function. Revocation schemes proposed in the literature are,
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e.g., [38, 50, 36, 23, 13, 14, 54, 22, 12, 33, 53]. A particularly interesting prop-
erty a cryptosystem in the broadcast encryption setting can have is traceabil-
ity [11], i.e., the ability to trace a “pirate” decryption box back to the corrupted
user(s), called traitor(s), who constructed it. Thus, traceability allows to iden-
tify a traitor (or a coalition of traitors). Such schemes are called traitor tracing
schemes and a variety of them was proposed, e.g., [11, 39, 40, 32, 47, 48, 37,
5, 18, 43, 51, 28, 45, 30, 29, 35, 10, 49, 9, 16, 46, 1, 4, 6]. The combination of
revocation and traceability is an aspiring goal. We stress that combining these
properties is nontrivial (see [7, Section 4.1]). Nevertheless, there are schemes,
e.g., [19, 38, 36, 50, 23, 13, 14, 31, 15, 7, 26]1, which provide a solution for this
problem. These schemes are called trace-and-revoke schemes.

Threshold extractable hash proof systems. In [53], Wee established thresh-
old extractable hash proof systems (TEHPS) as a generalization of extractable
hash proof systems (EHPS) [52]. Applying the concept of TEHPSs, Wee ex-
plains threshold public key encryption, threshold signatures, and revocation
schemes from the Decisional Diffie-Hellman (DDH), from the Computational
Diffie-Hellman (CDH), and from the factoring assumptions which — at least in
the case of factoring — led to new cryptosystems. We expand the generic view
of [53] by providing a TEHPS from the “Extended Decisional Diffie-Hellman”
(EDDH) assumption due to Hemenway and Ostrovsky [24]. The EDDH assump-
tion generalizes the DDH and Decisional Composite Residuosity (DCR) assump-
tions. By our first result, we obtain threshold public key encryption, threshold
signatures, and revocation schemes from the EDDH assumption. In particu-
lar, our generic system extends the generic view of revocation schemes from
[53] (recapped below) and, additionally, via our second result, it yields a new
trace-and-revoke scheme from the DCR assumption. (This is not known for the
factoring-based instance of [53].)

A generic revocation scheme. Recently, Wee [53] gave a very simple and
elegant generic view of revocation schemes. He explains and generalizes previous
constructions (e.g., [38, 50]). The public key in these constructions contains
the coefficients of a secret polynomial f(x) = a0 + a1x + · · · + atx

t “in the
exponent” as ga0 , ga1 , . . . , gat . Note that this allows to compute values gf(x) for
arbitrary x. A ciphertext is of the form C = (R, u, (uf(id))id∈R), where R is
a set of t revoked identities. (The uf(id) can be computed from pk , and using
knowledge of an exponent r with u = gr.) The corresponding encapsulated key2

is s = uf(0). Any user with identity id in the system possesses a user secret key
usk id = f(id). (Of course, 0 is not an allowed identity for a user.) If id 6∈ R, then
a user can derive a (t + 1)-st share uusk id = uf(id) and compute uf(0) through
Lagrange interpolation of the t+ 1 values uf(id) (for id ∈ R∪ {id}). Depending

1 Note that the schemes from [36, 23, 13] support a different form of traitor tracing.
Particularly, their main goal is to find a setting in which the pirate box is not useful
anymore rather than identifying the traitor(s).

2 Wee’s scheme actually is a key encapsulation mechanism, not a full encryption
scheme. Hence, a ciphertext does not encrypt a message, but only encapsulates a
key that can be used to (symmetrically) encrypt a message.

2



on the domain over which we are working, and on how a “raw key” s = uf(0)

is post-processed, this yields a revocation scheme from the DDH, the CDH, or
the factoring assumption. Note that although similar secret sharing techniques
are common in broadcast encryption, Wee’s scheme is particularly simple and
appealing from a conceptual point of view.

Our first result: an EDDH-based TEHPS instance. By giving a slightly
different generic view, we extend the work of Wee to obtain threshold extractable
hash proof instantiations from the extended decisional Diffie-Hellman assump-
tion. Concretely, the EDDH assumption works in a group G with subgroups
G,H. It states that, given g, gx, and gy, elements gxy are computationally indis-
tinguishable from elements gxy ·h, where g ∈ G and h ∈ H are uniformly chosen,
and x, y are uniform exponents. For G = H, we have the DDH assumption, and
if G = Z∗N , G = {xN | x ∈ G}, and H = 〈1+N〉, we have the DCR assumption.
In particular, our first result yields EDDH-based threshold encryption, signa-
tures, and revocation schemes. We stress that the EDDH-based instances use a
potential stronger assumption (i.e., DCR) as opposed to Wee’s factoring-based
schemes. Nevertheless, to give a foreshadow, this slightly stronger assumption
enables us — via our second result — to obtain a new DCR-based trace-and-
revoke scheme which, again, is not known to achieve from Wee’s factoring-based
scheme. Our revocation scheme is similar to the above generic scheme, but has

ciphertexts C = (R, u1, (uf(id)1 )id∈R, u2), for u1 ∈ G and u2 = u
f(0)
1 · h with

h ∈ H. The shared key is extracted from h. Hence, instead of directly using

u
f(0)
1 as shared key, we use it to blind the actual key h. This is consistent with

the EDDH assumption: EDDH does not state that gxy looks random — it does
state however that gxy can be used to blind an H-element. The security analysis
of this modified scheme is similar to the analysis of previous schemes. The only
difficulties arise out of the fact that the group order of G may not be known
(e.g., in the case of DCR). Hence, we must avoid inversion operations in the
exponent. (Such inversion operations arise during Lagrange interpolation of the
polynomial f in the exponent.) More details about the technique we use to avoid
inversions in the exponent are given below.

Our second result: traceability of the EDDH-based revocation scheme.
We prove that our EDDH-based revocation scheme also supports a mild form of
black-box traitor tracing. That is, we prove that any pirate box produced by a
coalition of T ≤ (t + 1)/2 corrupted users can be traced back to a user in that
coalition. Tracing requires only completely black-box access to the pirate box
and works for imperfect decryption boxes (where the box is allowed to decrypt
well-formed ciphertexts invalidly down to some threshold). Further, we allow
adversarially chosen revoked sets R. Similar black-box tracing strategies in the
revocation setting were considered in previous works, e.g., in [50, 15]. But unlike
in, e.g., [50], our tracing algorithm works with imperfect pirate boxes that may
even only work for an adversarially chosen set R of revoked users. The tracing
model in [15] also considers imperfect decryption boxes and adversarially chosen
revoked users, but for a different scheme. (To achieve black-box traceability in
the BE setting we note that similar techniques are common, e.g., in [7].) However,
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we stress that our focus is on the generic view of constructing trace-and-revoke
schemes. Nevertheless, our tracing strategy is explained in more detail below.

More on the used techniques. To construct revocation schemes from the
EDDH assumption — in which the order of the subgroup G might not be known
as opposed to Wee’s generic construction above — we use a technique called
“clearing the denominator” in the exponent. This tool was used before, but in
different scenarios to ours, e.g., in [44, 53, 2]. Hence, we can avoid Lagrangian
coefficient inversion in the exponent and are able to construct our EDDH-based
revocation scheme. For traceability, consider random ciphertexts of the form

CRrnd = (R, u1, (uf(id)1 hzid )id∈R, u
f(0)
1 hz0) for uniform h ∈ H and zid , z0.

Under the EDDH assumption, such random ciphertexts are indistinguishable
from real ones, even when knowing a single user key usk id . In particular, a
pirate box B decrypts random ciphertexts just as well as real ones. However, the
decryption of random ciphertexts depends highly on which user key usk id is used
to decrypt. Hence, to trace a pirate box B back to its creator, we can simply feed
B with random ciphertexts and compare B’s output with decryption results for
various user keys. This strategy only works if the pirate box B knows only one
user key. If B knows, say, two different user keys, it can distinguish real from
random ciphertexts. (For instance, B could decrypt a given ciphertext under the
two keys. If the decryptions do not match, the ciphertext cannot be real. See [27]
by Kiayias and Yung for a more general case and a formal analysis.) Thus, we
adapt our strategy by considering “semi-random ciphertexts” of the form

CR,Irnd = (R, u1, (uf(id)1 hf
′(id))id∈R, u

f(0)
1 hf

′(0))
for f ′(x) ∈ Zq[x] uniform
of degree ≤ t, but subject
to f ′(id) = 0 for id ∈ I.

(1)

Such ciphertexts are indistinguishable from real ones, even when knowing the
user keys for I. However, when using user keys for identities outside of I, then we
will get a different, random result. Our tracing strategy will hence make a guess
for the set I of corrupted users, and confirm the guess by checking if B decrypts
ciphertexts CR,Irnd correctly. (Note that this is very similar to the “black-box con-
firmation” argument defined by Boneh and Franklin [5].) The main challenge
in our proof consists of handling the case when B knows some, but not all user
keys for I. In that case, we have to make sure that we output an identity in I
that surely corresponds to a traitor. Similar traceability strategies were already
considered, e.g., in [5] (but with a restriction on how the pirate box is built),
and in [28, 9, 7] (for very different schemes). In the revocation setting the trac-
ing technique of Tzeng and Tzeng [50] also considers semi-random ciphertexts
as those from (1). However, the tracing algorithm of [50] assumes a pirate box
with perfect decryption, and, more importantly, has to choose the analog of the
revoked set R from (1) by itself. Dodis, Fazio, Kiayias, and Yung [15] consider
imperfect pirate boxes and adversarially chosen revoked users in the revocation
setting, but for a different scheme. Again, we stress that the novelty of our work
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lies in the fact that we extend Wee’s generic view of revocation schemes by pro-
viding an EDDH-based trace-and-revoke variant which, in particular, generalizes
(known) DDH-based and (new) DCR-based trace-and-revoke schemes.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, k ∈ N
denotes the security parameter. For a finite set S, we denote by s ← S the
process of sampling s uniformly from S. For a probabilistic algorithm A, we
write y ← A(x) for the process of running A on input x with uniformly chosen
random coins, and assigning y the result. If A’s running time is polynomial in
k, then A is called probabilistic polynomial-time (PPT). A function f : N →
R is negligible if it vanishes faster than the inverse of any polynomial (i.e., if
∀c∃k0∀k ≥ k0 : |f(k)| ≤ 1/kc). On the other hand, f is significant if it dominates
the inverse of some polynomial (i.e., if ∃c, k0∀k ≥ k0 : f(k) ≥ 1/kc).

(Binary) relations for hard search problems [52, 53]. Following the defi-
nition of (binary) relations for hard search problems in [53], let Rpp be a family of
binary relations, where pp is a public parameter. We assume the existence of two
PPT algorithms: given the security parameter k in unary, SampP(1k) outputs a
public parameter pp together with a secret parameter sp, while SampR(1k, pp)
outputs a binary relation (u, s) ∈ Rpp such that given only u it is hard to find s.
(To make random coins r explicit, we may write SampR(1k, pp; r).) Concretely,
we define the one-way property of binary relations for hard search problems in the
sense that with overwhelming probability over pp, for all u, there exists at most
one s such that (u, s) ∈ Rpp , and, given an adversary A that gets pp and u with
(u, s) ← SampR(1k, pp), there exists an efficiently computable generator Gpp

such that, for all A, AdvprgA (k) := Pr [A(pp, u,Gpp(s)) = 1]−Pr [A(pp, u,R) = 1] ,
with uniform R, is negligible in k.

Lagrange interpolation and Vandermonde matrices. Fix a field F and
d + 1 values x0, . . . , xd ∈ F. The Vandermonde matrix Vx0,...,xd

∈ F(d+1)×(d+1)

is defined as

Vx0,...,xd
:=

1 x0 . . . x
d
0

...
...

. . .
...

1 xd . . . x
d
d

 .

It is easy to see that det(Vx0,...,xd
) =

∏
i<j(xj −xi); in particular, Vx0,...,xd

is in-
vertible iff all xi are distinct. We can evaluate a polynomial f(x) = a0+a1x+· · ·+
adx

d at x0, . . . , xd via (f(x0), f(x1), . . . , f(xd))
> = Vx0,...,xd

· (a0, a1, . . . , ad)>.
Conversely, given values y0, . . . , yd ∈ F, we can via (a0, a1, . . . , ad)

> = V −1x0,...,xd
·

(y0, y1, . . . , yd)
>compute coefficients a0, . . . , an ∈ F of a polynomial f(x) =

a0+a1x+· · ·+adxd such that f(xi) = yi. It will be useful to perform such matrix-
vector multiplications “in the exponent,” where generally a matrix M = (Mi,j) ∈
Fn×n is known, and a vector x = (xi) ∈ Fn is given in the form X = (Xi) = (gxi)

for some g. We will write M ◦X := (Y1, . . . , Yn) with Yi :=
∏n
j=1X

Mi,j

j . If we
write y = (yi) for the “exponent vector” with Yi = gyi , this achieves M · x = y.
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The Extended Decisional Diffie-Hellman assumption. In [24], Hemen-
way and Ostrovsky introduced the Extended Decisional Diffie-Hellman (EDDH)
assumption. We say that the EDDH assumption holds for group G and sub-
groups G,H ⊆ G iff AdveddhG,H,D(k) := Pr

[
D(1k, ord(H), g, ga, gb, gab) = 1

]
−

Pr
[
D(1k, ord(H), g, ga, gb, gabh) = 1

]
is negligible for any PPT distinguisher D,

for uniform group elements g and h from G and H, respectively, for uniform
exponents a, b, and group order function ord. Additionally, we require that there
exists a randomness extractor Geddh

G,H such that Geddh
G,H(h) with uniform h ∈ H is

pseudorandom. We note that the EDDH assumption can be instantiated under
the DDH and the DCR assumption. (We refer to [24] for further details.)

3 First result: an EDDH-based TEHPS instance

Threshold extractable hash proof systems. We first restate the definition
of threshold extractable hash proof systems (TEHPS) from [53], in which Wee
explains several cryptosystems, i.e., threshold encryption, threshold signatures,
and revocation schemes as arising from TEHPSs for a hard search problem with
instances u and solution s (defined as above). For public key hk , we define a
family of hash functions Hhk , which take as input a tag tag and an instance u, and
output a hash value Hhk (tag, u). A TEHPS TEHPS = (Gen,Share,Pub,Priv,Ext)
with tag space T consists of the following PPT algorithms:

Setup. Given the security parameter k ∈ N, the threshold parameter t ∈ N, and
system parameters (pp, sp) (defined as above), Gen((pp, sp), 1k, 1t) generates
a public key hk and a master secret key msk .

Key generation. Share(msk , tag), given the master secret key msk and a tag
tag ∈ T , generates a user secret key usk tag for tag tag.

Public evaluation. Pub(hk , tag, r), given a public key hk , a tag tag ∈ T , and
random r, outputs a hash value Hhk (tag, u), with (u, s) = SampR(1k, pp; r).

Private evaluation. Priv(usk tag, u), given a user secret key usk tag and an in-
stance u, outputs a hash value Hhk (tag, u).

Extraction. Ext(u, (tagi, τi)i∈[t+1]), given an instance u, tags (tagi)i∈[t+1] ∈
(T )t+1, and hash values (τi)i∈[t+1], outputs a value s or ⊥.

For all k, t ∈ N and with overwhelming probability over all values (pp, sp) ←
SampP(1k), for all (hk ,msk) ← Gen((pp, sp), 1k, 1t), for all r, for all (u, s) ←
SampR(1k, pp; r), we require correctness, (t+ 1)-extraction, and t-simulation:

Correctness. For all tag ∈ T , all usk tag ← Share(msk , tag), we require that
Pub(hk , tag, r) = Hhk (tag, u) = Priv(usk tag, u).

(t+ 1)-extraction. For all distinct tags (tagi)i∈[t+1] ∈ (T )t+1, and all hash
values (τi := Hhk (tagi, u))i∈[t+1], for s = Ext(u, (tagi, τi)i∈[t+1]), we require
(u, s) ∈ Rpp .

t-simulation. For all distinct (tagi)i∈[t] ∈ (T )t, there exists a PPT algorithm
SetupSim such that distributions of ω = (hk , usk tag1 , . . . , usk tagt) in the fol-
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lowing are statistically close: i.e., we require that

{ω : (hk ,msk)← Gen((pp, sp), 1k, 1t), (usk tagi ← Share(msk , tagi))i∈[t]}
s
≈ {ω : (hk , usk tag1 , . . . , usk tagt)← SetupSim(pp, tag1, . . . , tagt)},

where
s
≈ denotes statistically indistinguishable.

A TEHPS for the EDDH relation. We now construct a new EDDH-based
threshold extractable hash proof system. As opposed to the DDH-based con-
struction in [53], here, the group order of a subgroup G ⊆ G may not be known
(i.e., in the case of DCR). Hence, we must avoid inversion operations in the ex-
ponent. We use a technique called “clearing the denominator” that, in a similar
way, was used before but in different scenarios; e.g., in [44, 53, 2]. Further, fix a
commutative group G and a subgroup H ⊆ G of (known) order n. We assume
that a (proper) lower bound d on the smallest prime divisor of n is known. Let
G ⊆ G be a cyclic subgroup of (potentially unknown) order q and let K := [B]
such that for x← K, the value x mod q is statistically close to uniform. In that
case we will sample an exponent x uniformly from [B], where B = B′ · 2k for an
upper bound B′ on q. (Such an upper bound B′ will always be known.) Further,
we need to specify a (binary) relation for the EDDH problem. Therefor, consider

Reddh
pp = {(u, s) ∈ ((G×G)×H) | u2 = usp1 s} ,

with u = (u1, u2) ∈ (G × G), for uniform s ∈ H, uniform sp ∈ K. We set
the public parameter pp to be (n, g, gsp) and assume that we can sample g
from G efficiently. Thus, sp and pp are efficiently samplable. (This completes
the description of the SampP algorithm for the EDDH relation.) For the second
EDDH-relation algorithm, we set SampR(1k, pp; r) to output

(u, s) := ((gr, (gsp)r · s), s),

for randomness r ∈ K and uniform s ∈ H. (This completes the description of
SampR.) Further, we set Gpp(s) := Geddh

G,H(s). Now, we are able to construct:

Construction 3.1 (EDDH-based TEHPS). Let a TEHPS TEHPSEDDH =
(Gen,Share,Pub,Ext,Priv) with tag space T := [min{d,B}] ⊂ Z, with d and B
as above, be as follows:
Setup. Gen((pp, sp), 1k, 1t), with pp =: (n, g, gsp), chooses a polynomial f(x) :=

sp + a1x+ · · ·+ atx
t over K, with uniform exponents ai, for i ∈ [t]. The out-

put is the public key hk := (n, g̃, g̃sp , (g̃ai)ti=1), with g̃ := gv, for uniform
v ← K, and master secret key msk := (sp, (ai)

t
i=1). We fix a hash function

Hhk (tag, u) := u
f(tag)
1 , with u = (u1, u2) and some tag tag ∈ T . For ran-

domness r ∈ K, we have (u, s) = ((g̃r, g̃sp·r ·s), s) = SampR(1k, (n, g̃, g̃sp); r).
(Note that we re-randomize the g-elements of pp here.)

Sharing. Share(msk , tag), for tag ∈ T , returns usk tag := f(tag).
Public Evaluation. Given a public key hk , a tag tag ∈ T , randomness r ∈ K,

Pub(hk , tag, r) computes(
g̃sp ·

t∏
i=1

(g̃ai)
tagi )r (

=
(
g̃f(tag)

)r
= u

f(tag)
1 = Hhk (tag, u)

)
,
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with (u, s) = SampR(1k, (n, g̃, g̃sp); r) as above.
Private Evaluation. Given usk tag and u = (u1, u2), Priv(usk tag, u) outputs

u
usktag

1 (= u
f(tag)
1 ).

Extraction. Ext(u, (tagi, τtagi)i∈[t+1]), given u = (u1, u2), tags (tagt+1)i∈[t+1] ∈
(T )t+1, and hash values (τtagi)i∈[t+1], efficiently computes fractional La-

grangian coefficients Li(0) =
∏t+1
j=1,i6=j

−tagj
tagi−tagj ∈ Q such that f(0) =∑t+1

i=1 Li(0) · f(tagi) mod q. (Note that the Lagrangian coefficients can be
computed iff all tags (tagt+1)i∈[t+1] are distinct. If the tags are not distinct
we output ⊥.) Now, for ∆ := lcm{

∏
i,j∈[t+1],i6=j(tagi− tagj) ∈ Z} the values

∆ · Li(0), for all i ∈ [t + 1], are integers. Thus, we are able to extract and
output the value

(( t+1∏
i=1

τ
∆Li(0)
tagi

)−1 · u∆2 )∆−1 mod n
.

(Note that n is always known.)

We now show correctness, (t+1)-extraction, and t-simulation of Construction 3.1.

Claim 3.2. For all t ∈ N, TEHPSEDDH from Construction 3.1 is correct, (t+1)-
extractable, and t-simulatable.

Proof sketch. For all k, t ∈ N, with overwhelming probability over (pp, sp) ←
SampP(1k), for all r, for all (u, s)← SampR(1k, (n, g̃, g̃sp); r), with u = (u1, u2),
for all (hk ,msk) ← Gen((pp, sp), 1k, 1t), for all tags tag ∈ T , all usk tag ←
Share(msk , tag), we have:

Correctness. Correctness is easy to verify, i.e., Pub(hk , tag, r) = Hhk (tag, u) =
Priv(usk tagi , u).

(t+ 1)-extraction. For all distinct tags (tagi)i∈[t+1] ∈ (T )t+1, all hash values

(τi := Hhk (tagi, u))i∈[t+1](= (u
f(tagi)
1 )i∈[t+1]), for ∆ and fractional Lagrangian

coefficients Li(0) as above, Ext(u, (tagi, τtagi)i∈[t+1]) yields

(( t+1∏
i=1

τ
∆Li(0)
tagi

)−1 · u∆2 )∆−1 mod n (∗)
=
((
u
∆f(0)
1

)−1 · (usp1 · s)∆)∆−1 mod n

=
(
u−∆sp
1 · u∆sp

1 · s∆
)∆−1 mod n

= s.

Recall that all ∆ ·Li(0), for i ∈ [t+ 1], are integers and that we used Lagrangian
interpolation in the exponent in (∗). Thus, we obtain s such that (u, s) ∈ Reddh

pp .

t-simulation. For all distinct tags (tagi)i∈[t+1] ∈ (T )t+1, there exists a PPT al-
gorithm SetupSim as follows: Choose uniformly y1, . . . , yt ← K and set f(tagi) :=
yi, for i ∈ [t]. Further, set ĝ := gv, for uniform v ← K, and set ĝf(0) := (gsp)v =
ĝsp . Note, that this will uniquely define a polynomial f of degree ≤ t. Let ∆ be
as above but with tagt+1 = 0. That (implicitly) determines a vector

(∆a0, ∆a1, . . . ,∆at)
> := (∆ · V −1tagt+1,tag1,...,tagt) · (sp, y1, . . . , yt)

>.
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(That is every ∆ai can be written as linear combination of the yi, with appro-
priate integer coefficients. Here, again, we use ∆ to “clear the denominator” of
V −1’s entries.) Subsequently, output (n, g̃, g̃a0 , g̃a1 , . . . , g̃at), for g̃ := ĝ∆, and
(usk tag1 , . . . , usk tagt) := (y1, . . . , yt). Thus, the distribution of the output of
SetupSim and and the distribution of (hk , (Share(msk , tagi))i∈[t]) are statisti-
cally indistinguishable. ut
Now, by [53, Theorems 1, 2, 3], we derive semantically secure threshold public key
encryption, existentially unforgeable threshold signatures in the random oracle
model, and semantically secure revocation schemes from the hardness of the
EDDH assumption which — at least in the revocation case — yields a new
DCR-based revocation scheme. We will now provide details about revocation
schemes and recap from [53] how to build them from TEHPSs.

Revocation schemes. Opposed to a broadcast encryption scheme, where a set
of privileged users S ⊆ {1, . . . , N} (for number of users N ∈ N) is given as input
to the encryption function, a revocation scheme receives a set of revoked users
R := {1, . . . , N} \ S as input instead. The system then guarantees that users in
{1, . . . , N} \ R are able to decrypt correctly while users in R cannot decrypt.
We will not directly give a construction of a revocation scheme; rather we will
define a revocable key encapsulation mechanism which canonically implies an
revocation scheme, but allows for a simpler exposition.

Revocable key encapsulation mechanism. For simplicity, and following
[53], we define the notion of a revocable key encapsulation mechanism (RKEM).
An RKEM with identity space ID consists of the following PPT algorithms:
Setup. Gen(1k, 1t), given the security parameter k ∈ N and a revocation thresh-

old t ∈ N, generates a public key pk and a master secret key msk .
Key generation. Share(msk , id), given the master secret key msk and an iden-

tity id ∈ ID, generates a user secret key usk id for identity id .
Encapsulation. Enc(pk ,R), given the public key pk and a subset R ⊆ ID that

contains the identities of up to t revoked users, outputs a ciphertext C and
a corresponding key K.

Decapsulation. Dec(id , usk id , C), given an identity id , a corresponding user
secret key usk id , and a ciphertext C, outputs a key K.

For correctness, we require that for all k, t ∈ N, all (pk ,msk) ← Gen(1k, 1t),
all set R ⊆ ID of up to t identities, all (C,K) ← Enc(pk ,R), all identities
id ∈ ID \ R, and all usk id ← Share(msk , id), we have Dec(id , usk id , C) = K.
We will not define security for RKEMs. We note that these notions can be
defined in a straightforward way, and the RKEMs based on TEHPSs from [53]
can be proven secure in this sense. (In fact, [53] only shows selective-identity
security; we expect, however, that adaptive-identity security can be achieved
along the lines of Dodis and Fazio [14].) As mentioned before, an RKEM implies
a revocation scheme. That is, to build a revocation scheme from an RKEM, use
the encapsulated key to symmetrically encrypt the message to be broadcasted;
analogously, use the decapsulated key for symmetrically decryption.

RKEMs from TEHPSs. Following [53], we recap the construction of an re-
vocable key encapsulation mechanism RKEM = (Gen,Share,Enc,Dec) with iden-
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tity space ID := T from a threshold extractable hash proof system TEHPS =
(Gen′,Share′,Pub,Ext,Priv) with tag space T as follows:
Setup. Gen(1k, 1t), given security parameter k ∈ N and revocation threshold

t ∈ N, samples (pp, sp)← SampP(1k) and outputs public-key-master-secret-
key pair (pk ,msk) := Gen′((pp, sp), 1k, 1t).

Key extraction. Share(msk , id), for id ∈ ID, returns usk id ← Share′(msk , id).
Encapsulation. Enc(pk ,R), for public key pk and R ⊆ ID of size exactly

t, chooses a random value r, samples (u, s) ← SampR(1k, pk ; r), and com-
putes τid := Pub(hk , id , r), for id ∈ R. The ciphertext is given by C :=
(R, u, (τid)id∈R), the key is K := Gpk (s).

Decapsulation. Dec(id , usk id , C), with usk id and C as above, retrieves s :=
Ext(u,R∪ {id}, (τid)id∈R,Priv(usk id, u)) and outputs K := Gpk (s).

Correctness is easy to verify. For semantic security, we point to [53, Theorem 3].
Hence, as a result, we derive an EDDH-based revocation scheme.

4 Second result: ((t + 1)/2, ε)-traceability of the
EDDH-based RKEM instance

Trace-and-revoke schemes. A trace-and-revoke scheme connects the prop-
erties of a revocation scheme and the benefits of a traitor tracing scheme. As
mentioned before, combining these is nontrivial (see [7, Section 4.1]). Follow-
ing [5, 15, 9, 7], we define traceability of an RKEM. (Note, this implicitly de-
fines traceability of a revocation scheme due to the results of Section 3 and,
thus, we derive a trace-and-revoke scheme.) Intuitively, we require an efficient
algorithm Trace that can, from oracle access to a stateless pirated box B, deduce
the identity of at least one party that has been involved in the construction of
B. More concretely, suppose an adversary A corrupts a number of devices (i.e.,
obtains a number of user keys usk id), and constructs a pirate box B. Suppose
that B successfully decrypts ciphertexts for an adversarially specified set R of
revoked users. Then we want that Trace, given oracle access to B, can deduce at
least one of the identities id whose device A has corrupted. We will also define
a relaxation of traceability, dubbed sid-traceability, in which the adversary has
to commit to corrupted identities in advance, before even seeing the public key.

Definition 1 (Traceable/sid-traceable RKEM). We say that that an ad-
versary A is T -valid if, in experiment ExptraceRKEM,Trace,A (defined in Figure 1),
it always chooses t ≥ T , it always outputs a set R of size at most t, and it
always makes at most T Share queries. (Note that this definition does not ac-
tually depend on Trace, and that t is specified by A itself.) Furthermore, for
given pk ,R, we define the quality of a pirate box B output by A as QB,R :=
Pr [B(C) = K | (C,K)← Enc(pk ,R)] . An RKEM RKEM is (T, ε)-traceable if
there exists a PPT algorithm Trace (that may depend on T and ε), so that for
every PPT T -valid A, AdvtraceRKEM,A(k) := Pr

[
ExptraceRKEM,Trace,A,ε(k) = 1

]
is negli-

gible. RKEM is (T, ε)-traceable under selective-identity attacks (short: (T, ε)-
sid-traceable) if the analogous statement holds with respect to Advsid-traceRKEM,A(k) :=
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Experiment ExptraceRKEM,Trace,A,ε(1k)

1t ← A(1k)
(pk ,msk)← Gen(1k, 1t)
(B,R)← AShare(msk,·)(pk)
id ← TraceB(·)(msk ,R)
if A has queried Share(msk , id)

or QB,R < ε return 0
return 1

Experiment Expsid-traceRKEM,Trace,A,ε(1k)

(1t, C)← A(1k)
(pk ,msk)← Gen(1k, 1t)
∀id ∈ C: usk id ← Share(msk , id)
(B,R)← A(pk , (usk id)id∈C)
id ← TraceB(·)(msk ,R)
if id ∈ C or QB,R < ε return 0
return 1

Fig. 1. Security experiments for traceability and sid-traceability of an RKEM.

Pr
[
Expsid-traceRKEM,Trace,A,ε(k) = 1

]
and Expsid-traceRKEM,Trace,A,ε, defined in Figure 1, in which

A has to output an identity set C of corrupted users of size at most t in advance.

From sid-traceability to traceability. There is a trivial (yet expensive) way
to convert sid-traceable RKEMs into traceable ones. Namely, we can simply guess
the identities for which an adversary (adaptively) requests user keys. Concretely:

Lemma 1 (sid-traceable ⇒ traceable). Let RKEM by a (T, ε)-sid-traceable
RKEM with N identities. If

(
N
T

)
is polynomial in k, then RKEM is also (T, ε)-

traceable (with the same Trace algorithm). Concretely, for every adversary A on
RKEM’s traceability, there is an adversary A′ of roughly the same complexity on
RKEM’s sid-traceability, such that Advsid-traceRKEM,A′(k) ≥ AdvtraceRKEM,A(k)/

(
N
T

)
.

Proof sketch. See full version [25] for a proof sketch.

Relation to our second result. Our second result (below) shows the ((t +
1)/2, ε)-sid-traceability of an EDDH-based RKEM based on threshold extract-
able hash proofs. Our corresponding tracing algorithm will have a runtime that
is linear in

(
N
T

)
. Thus, in that case,

(
N
T

)
must be polynomial anyway, and the

loss in Lemma 1 seems acceptable.

More about our tracing strategy. We propose a tracing strategy that is
similar to the tracing techniques in the revocation setting given by [50, 15].
However, we stress that the tracing algorithm of [50] assumes a pirate box with
perfect decryption, i.e., ε = 1, and chooses the revoked set R by itself. The
tracing mode in [15] also considers imperfect decryption boxes, adversarially
chosen revoked user sets, and, additionally, allows of querying user secret keys
adaptively. (This is possible since their scheme allows to change the public key
continuously even after the system setup.) Additionally, both, i.e., [50, 15], only
address the DDH setting. Nevertheless, we stress that the novelty of our work
lies in the fact that we propose a new generic view of trace-and-revoke schemes.

4.1 Warmup: (1, 2/3)-sid-traceability of the EDDH-based RKEM

We can now state our second result; i.e., we show the traceability of RKEMEDDH

which is an EDDH-based RKEM as defined and constructed in Section 3. (This
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immediately translates to an EDDH-based trace-and-revoke scheme.) As a warm-
up, we first showcase the (1, 2/3)-sid-traceability of RKEMEDDH.

Informal proof strategy. To explain the overall idea of our tracing algorithm,
observe that the decryption of a ciphertext generated by Enc does not depend on
which user key was used to decrypt. (This is necessary for correctness.) Hence,
we cannot expect that a pirate box B can be traced by feeding it valid ciphertexts
generated by Enc. Instead, we will feed B random ciphertexts of the form

CRrnd = (R, u1, (uf(id)1 hzid )id∈R, u
f(0)
1 hz0) for uniform h ∈ H and zid , z0. (2)

We will show that for such random ciphertexts, the result of the (honest) de-
cryption depends on the identity of the used user key usk id . Furthermore, a
suitable reduction to the EDDH assumption will show that honestly generated
ciphertexts are indistinguishable from random ones. Hence, Trace can go through
the set of all possible identities id , and check how often B(CRrnd) coincides with
Dec(id , usk id , C

R
rnd). In case B outputs the same as Dec with probability close to

2/3, chances are that we have found the pirate identity.

Theorem 1 ((1, 2/3)-sid-traceability of RKEMEDDH). Assuming the EDDH
assumption, we have that the RKEM RKEMEDDH = (Gen,Share,Enc,Dec), with
identity space ID, polynomial number N of identities, and key derivation func-
tion G(s) = s, is (1, 2/3)-sid-traceable. The corresponding tracing algorithm
Trace runs for O(kN logN) steps, and makes O(k logN) oracle queries. Con-
cretely, for every T -valid adversary A, there is an EDDH adversary D, such that∣∣AdvtraceRKEM,A(k)

∣∣ ≤ O(2−k), for all k that satisfy
∣∣∣AdveddhG,H,D(k)

∣∣∣ ≤ 1/9 − εG, for

negligible εG.

Proof. See the full version [25] for a proof.

4.2 General case: ((t + 1)/2, ε)-sid-traceability of RKEMEDDH

Why our tracing strategy for T = 1 does not work. First, observe that our
concrete tracing strategy from the proof of Theorem 1 fails if A requests multiple
user keys. For instance, A could use multiple user keys to distinguish valid from
random ciphertexts. Concretely, A could request two keys usk id1

and usk id2
and

let B first check if a given ciphertext decrypts to the same value under both
usk id1 and usk id2 . If the decryptions do not match, then B immediately fails.
(Recall that our proof uses the fact that random ciphertexts decrypt differently
under different keys.) Such a box B would be useless to our tracing algorithm
Trace, since Trace feeds B only random ciphertexts. (See [27] for more details.)

How to adapt our strategy. A natural way to adapt our strategy — this es-
sentially follows the “black-box confirmation” argument from [5] — would seem
as follows. Given a set I ⊆ ID of identities, we can construct “semi-random ci-

phertexts” of the form CR,Irnd = (R, u1, (uf(id)1 hf
′(id))id∈R, u

f(0)
1 hf

′(0)) for f ′(x) ∈
Zq[x] uniform of degree ≤ t, but subject to f ′(id) = 0 for id ∈ I. We will also
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define the random quality RQI
B,R of a box B relative to a given revoked set

R, and an identity set I ⊆ ID: RQI
B,R := Pr

[
B(CR,Irnd ) = Dec(id , usk id , C

R
rnd)
]
,

for some id ∈ I. Intuitively, ciphertexts CR,Irnd look consistent from the point of
a pirate box that only knows user keys for identities in I. Hence, our tracing
strategy for a larger number T of traitors will be as follows. We iterate over
all
(
N
T

)
identity subsets I ⊆ ID of size T , and approximate RQI

B,R. If the ap-

proximation indicates that RQI
B,R ≥ ε, then we have a candidate for the set C

of traitors. Unfortunately, there may be many candidates, and not all of them
contain only traitors. To filter out one identity that surely is a traitor, we remove
identities from I, one at a time. If the quality RQI

B,R drops, we must have re-
moved a traitor. (If the removed identity was no traitor, then B would not have
noticed.) Again, this tracing strategy is similar to that of [5, 28, 50, 15, 9, 7].
More formally:

Theorem 2 (((t+1)/2, ε)-sid-traceability of RKEMEDDH). Assuming EDDH,
RKEMEDDH is (T, ε)-sid-traceable for every T ≤ (t+1)/2 for which

(
N
T

)
is polyno-

mial, and every significant ε. The corresponding tracing algorithm Trace runs for
O(k

(
N
T

)
/ε2) steps, where N denotes the number of identities in the system. Con-

cretely, for every T -valid adversary A, there are adversaries D,E, F , such that∣∣AdvtraceRKEM,A(k)
∣∣ ≤ O(2−k), for all k that satisfy

∣∣∣AdveddhG,H,D(k)
∣∣∣+ (∑T

i=2

(
N
i

))
·∣∣∣AdveddhG,H,E(k)

∣∣∣+ (N − T ) ·
∣∣∣AdveddhG,F (k)

∣∣∣ ≤ ε
3T .

Proof. See full version [25] for a proof.

Potential generalizations of our tracing result. There are several dimen-
sions in which one might want to improve our tracing result. We will comment on
how our result can be generalized (and when a generalization seems problematic)
in the full version [25].
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